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Abstract— In the paper a simple formula for the non-resonant and 
off-resonant nonlinearity in symmetric linear molecules and conjugated 
polymers made from such molecules is presented. Obtained results agree 
with experimental data known from the literature.  
 
 
It is well-known that nonlinear refraction and absorption 
occur due to transitions between discrete states in 
molecules and lead to intensity-dependent refractive 
index and absorption changes ∆n= n2I and ∆α = α2I 
respectively where I is the intensity and n2 and α2 are 
coefficients that depend on the detailed structure of the 
molecules and their environment. The early third 
harmonic generation experiments by Sauteret and co-
workers with input beams at 1.89 and 2.62 µm reported 
the nonlinearities of a number of crystalline conjugated 
polymers, including  n2=1.8x10-12 cm2/W in the single 
crystal conjugated polydiacetylene PTS (poly bis(p-
toluene sulfonate) of  2,4-hexadiyne-1,6-diol) [2]. Such 
large nonlinearities are a consequence of the 
delocalization of the 2pz atomic orbitals of carbon atoms 
into new molecular π-orbitals when they are bonded 
together in linear chains containing single, double or 
triple bonds. Based on the range of nonlinearities known 
at that time, these results stimulated both theoretical and 
experimental interest in linear molecules and conjugated 
polymers [for example 3-12]. 

Symmetric linear molecules or polymers have no 
permanent dipole moment and the electronic states 
exhibit either even (Ag) or odd (Bu) symmetry. The 
minimum number of excited states needed to describe 
their nonlinear optics via electric dipole transitions is two; 
one state at an energy 10ω  above the ground state is one 
photon active (1Bu) and the other at 20ω  is two photon 
active (and according to convention the state is called 
mAg) [3]. The ground state is 1Ag. The states are coupled 
via transition dipole moment elements 2

10 || µ  for 
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ug B11A →  and 2
21 || µ  for 

gu mA1B → . It has been shown 

that that the dominant contributions to the third order 
nonlinearity in conjugated polymers and “long” linear 
molecules in general arise from these two excited states, 
especially for frequencies below the corresponding one 
and two photon optical resonances at 10ω  and 2/20ω  
respectively.[3, 4] 

This focused interest led to many measurements of 
optical nonlinearity linear, symmetric molecules ranging 
from dilute solutions of the molecules in appropriate 
solvents, to randomly oriented conjugated polymers in 
films to single crystal polymers[5-12]. Single crystals or 
highly oriented films are preferred for applications since 
the linear chains are parallel to one another which results 
in an optimally large nonlinearity along the delocalization 
(chain) axis. Although many measurements of the large 
nonlinearities were reported near the strongest one photon 
and two photon resonances of many symmetric linear 
molecules and conjugated polymers, there are only a few 
measurements at longer wavelengths beyond these 
resonances where applications relying on non-resonant 
nonlinearities and low losses could occur. Here we 
consider two specific cases, the single crystal 
polydiacetylene PTS and the linear squairaine molecules. 
This work was stimulated by independent measurements 
in PTS from two groups which are at variance with one 
another, albeit for crystals prepared in very different ways 
[14-16]. In the squaraines, measurements by different 
groups are consistent with one another [4, 11, 12 ]. Our 
goal here is to derive analytical expressions for n2 valid in 
the off-resonance and non-resonant regimes in order to 
predict at least the sign of the off resonance and non-
resonant nonlinearity which in PTS is in dispute.  

It is now well known that the molecular third order 
nonlinearity γ(3) for a symmetric linear molecule, 
corrected for all divergences can be written in the most 
general case as [18]  
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In symmetric molecules, the largest transition dipole moments involve the ground state and one even and one odd 
symmetry excited states. Hence the summations over the excited states are over v, n, m = 1 (1Bu) and v, n, m =2 (mAg). 
In condensed matter, the macroscopic third order nonlinearity, including a local field correction )3(f , is given by 
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in which N is the number of molecules per unit volume. Finally, the electronic nonlinear refractive index coefficient n2 
is then defined as 

 ( ) ( ) ( ){ }ωωω−ω−χ+ω−ωωω−χ+ωω−ωω−χ
ε

= ℜℜℜ ,,;,,;,,;
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where the subscript ℜ refers to the real part of χ(3).  
Equation (1) contains many terms in the most general case. Kuzyk and Dirk have reduced it considerably for 

symmetric linear molecules [19]. We have obtained an analytical solution for the “off-resonance” regime, when the 
lifetimes of the states (τ10 and τ21) are neglected in the resonant denominators, i.e. 1

1010 ][ −τ>>ω−ω  and 1
2110 ]2[ −τ>>ω−ω . 

The expression obtained for linear symmetric molecules is 
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This equation describes the long wavelength (small frequency) “tails” of the dispersion in the nonlinearity. For the 
“non-resonant” )0( →ω case 
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Note that that the interference between the one and two photon contributions proportional to )||( 2
10μ and ( 2

21 || µ ) 
respectively can be actually detrimental to obtaining large non-resonant nonlinearities! Another important factor is the 
ratio of the energies of the two states above the ground state. Furthermore, since the two terms have both different signs 
and different frequency dispersion, the net sign of n2 can depend strongly on frequency. To support the conclusions 
from the equations, we have evaluated Eqn. (4) numerically under no approximations. The result is illustrated in Figs. 1 
and 2 which show the frequency dispersion of n2 typical of polydiacetylenes and squaraines. The ratios of the transition 
dipole moments were taken from the theoretical work of Soos and co-workers and Kuzyk and co-workers respectively 
[3, 4] Note that as predicted by Eqn. (4), the sign of the nonlinearity can change with photon frequency depending on 
the relative magnitude of 2

1020
2

2110 ||/|| μωµω .  For both the polydiacetylenes and squaraines the sign of n2 is initially 
dominated by the one photon resonance, is always negative and increasing as the optical frequency is reduced below the 
one photon resonance. As the two photon resonance is approached, interference occurs between the one and two photon 
resonant contributions. n2 in the frequency range approaching the two photon resonances, on two photon resonance and 
for longer wavelengths the sign depends on the values of 1010 || τω−ω and 2120 || τω−ω , and on the ratio 

2
1020

2
2110 ||/|| μωµω . The dispersion in n2 resembles that associated with the dispersion in the linear index, but is 

opposite in sign. It becomes more pronounced when the lifetimes of the states increases as shown in Figs. 1b and 1c. If 
the ratio 2

1020
2

2110 ||/|| μωµω  is greater than unity the sign of the non-resonant n2 is positive, and for ratios less than one 
the sign of the non-resonant n2 is negative. In fact, the nonlinearity predicted for the polydiacetylene PTS based on the 
measured and calculated transition dipole moments ( 2||||4 2

10
2

21 >µ> μ ) and excited state lifetimes 
fs) 100  ps, few ( 2110 ≈τ≈τ  is shown in Fig 1(c). Experiments at CREOL single crystal PTS agree with the above 
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Fig. 1. Frequency dispersion of n2,Kerr for 10201021 33.1,10 ω=ωΓ=Γ  and 
different relative values of 2

10
2

12 |||| μµ . (a) For 2
21

2
10 |||| µ=µ , the 

contribution due to 2
10 || µ (red line), 2

21 || µ (green line) and the sum of 
the two (black line) are shown. (b) The sum of the contributions for 
different relative 01.01010 =ωΓ values of the transition dipole moments. 

01.01010 =ωΓ  in (a) and (b). (c) 001.01010 =ωΓ . Typical parameters for 
polydiacetylenes were used. 

positive on the low frequency side has been observed, as 
well as the decay in the magnitude of n2 for long 
wavelengths [16, 19]. Similar behavior has been reported 
in conjugated phenylenevinylenes another symmetric 
linear polymer with π-electron delocalization. 
Specifically Bubeck and co-workers actually tracked the 
sign change in n2 through the zero crossing point in MEH 
polyphenylvinylene [10]. In both materials, the sign of n2 
is negative between the one and two photon resonances, 
becomes positive near the two photon resonance and 
generally remains positive towards zero frequency (non-
resonant case).  

In contrast to this behavior, the nonlinearity in linear, 
symmetric molecules called squaraines have weaker two 
photon transition strengths and therefore should remain 
negative over the full range 010 >ω>ω . Specific 
predictions are shown in Fig. 2. In that class of materials 
the ratio 2

1020
2

2110 ||/|| μωµω is significantly smaller than 
unity because 2

10
2

21 ||| μ<µ . Experimental measurements 
support a negative near-resonant nonlinearity [4, 11,12]. 

Very recently the non-resonant nonlinearity has been 
measured in the symmetric linear molecule CS2. The 
transition dipole moments were measured to be 

2
10

2
21 |2||| μ>µ by two photon absorption spectroscopy 

and the nonlinearity n2 was found to be positive, as 
predicted above [21]. 

 
Fig. 1. Frequency dispersion of n2,Kerr for 10201021 10.1,3.1 ω=ωΓ=Γ  and 

different relative values of 2
10

2
12 |||| μµ . Parameters used are typical of 
squaraines. 

In summary, we have obtained a simple formula for the 
non-resonant and off-resonant nonlinearity in symmetric 
linear molecules and conjugated polymers made from 
such molecules. The sign of the non-resonant nonlinearity 
depends critically on the ratio of molecular parameters, 
specifically on 2

1020
2

2110 ||/|| μωµω  and the excited state 
lifetimes. The results should be useful in predicting not 
only the sign, but also the magnitude of the nonlinearity, 
within the approximations associated with local field. 
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