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Abstract—Microstructural fibers with high steps of the refractive 
index require special methods to calculate light propagating. In this 
paper three numerical methods describing beam propagation are 
compared. This comparison is shown for a two-core cylindrical 
waveguide.  
 
 
In recent years we can observe very fast development of 
complex waveguide structures as microstructural fibers 
[1], photonic nanowires [2] and slot waveguides [3], 
because of their prospective applications. Microstructural 
fibers have special structure which allows to obtain many 
nonlinear phenomena. These fibers consist of a solid pure 
silica core surrounded by an air hole lattice in the 
cladding. Such construction provides many useful 
properties as ultra flattened dispersion, tailored mode 
area, broadband single-mode guidance, high numerical 
aperture, adjustable dispersion, high birefringence, large 
or ultra small effective areas, large nonlinearity, etc. In 
order to design and optimize such waveguides, good and 
fast numerical tools are needed. Most of algorithms 
consider only the weakly guiding case with simple 
boundary conditions, proper for small changes of the 
refractive index. However, in microstructural fibers a 
high step of the refractive index takes place. This work 
considers also the case of a huge step of the refractive 
index. There are compared three numerical, fast and 
simple approximation methods applied to the directional 
coupler with a big difference of the refractive index 
between cores and cladding (Fig. 1.). 

The first examined method is the Beam Propagation 
Method (BPM) [4], relying on a numerical solution of 
Maxwell’s equations. Usually, one assumes slowly 
varying envelope approximation, so the second derivative 
of amplitude over dz can be omitted when compared with 
the first derivative (z is the direction of beam 
propagation).  
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Fig. 1. Directional coupler consisting of two cylindrical cores 
surrounded by cladding 

 

In the scalar version of the BPM, an electric field is 
polarized, in our case along the x-axis and: 

 ( ) ziti
x ezyx β−ω= ,,AE , (1) 

where β is a constant. If the contrast ratio between indices 
of the core and cladding is very small (weakly guiding), 
one can treat it as a homogeneous medium case. It allows 
dropping out the term with a divergence of electric field E 
and obtaining a standard wave equation:  
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All derivatives in this equation are substituted for finite 
differences. The BPM requires only the values of the E 
field in the initial step. In further steps the amplitude is 
calculated from the points of the previous step. 
Additionally, this method requires proper boundary 
conditions at the edge of a calculation frame. The most 
commonly used are Transparent Boundary Conditions 
(TBC) [5] and used in our simulations Perfect Matched 
Layer (PML) [6].  
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a) 

 
b) 

 
Fig. 2. Electric field profile in HE11 mode in a single core optical fiber 

with a radius 1 mµ  for a) low difference of indices n1-n2 = 0.008 and for 
b) high difference of indices n1-n2 = 0.5 

 

 This method gives a very good approximation for the 
weakly guiding case, but for higher contrast it is not 
proper because of the E field divergence on the bounds 
between cores and cladding. In order to satisfy the 
discontinuity of an electric field, one must apply proper 
boundary conditions. It can be clearly shown as an exact 
analytical solution (Fig. 2.) for HE11 in a single core 
optical fiber.  

 The second method is a coupled mode theory (CMT) 
[7], [8]. It treats Maxwell’s equations in an analytical way 
considering the field as a superposition of waveguide 
modes. In the case of 2 cores, the refractive index of a 
neighbouring core is treated as a disturbance. This 
perturbation causes additional polarization, which is the 
source of a field excited in another core. One cylindrical 

core has an exact analytical solution (Bessel functions) 
and the full form of the field in two cylindrical cores 
structure has the form: 

 ( ) ( ) ( ) ( ) zitiziti eyxEzeyxEzE β−ωβ−ω += ,A,A 2211 , (3) 

where E1, E2 – modes of separated waveguides, β - the 
propagation constant. One has to calculate amplitudes for 
both modes as a function of the propagation distance:  

 nmnmmmm ii
dz
d AAA κ−κ−= , (4) 

where m, n = 1, 2 and nm ≠ . To solve these amplitudes 
one has to obtain the coupling constant of two modes: 

 ∫ ∫
∞

∞−

∞

∞−

δε
Ρ

ωε
=κ nmmn EdxdyE0  (5) 

where 2
2

2
1 nn −=δε  is perturbation in the second core, and 

P is a factor obtained by integrating the vector product of 
E1 and E2 over the whole calculation frame.  

The third method reduces 3-dimensional BPM to 2D 
BPM by using the effective index method (Neff) [9]. 
Each core is divided into small pieces (Fig. 3.) and each 
of these pieces is substituted for a planar waveguide with 
a corresponding width. The dispersion equation must be 
solved and an effective refractive index is obtained for 
each of these pieces.  

 

 
 

Fig. 3. Neff method applied to the cylindrical core 

 

As a consequence of that, one obtains the distribution 
of the refractive index and one can create a two-
dimensional structure with such refractive index 
distribution. As it is obviously a 2D problem, the time of 
calculation radically decreases.  
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a) 008.0=∆n  
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b) 1.0=∆n  
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c) 5.0=∆n  
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Fig. 4. Coupling length as a function of the distance between cores 
obtained with the help of 3 methods for the difference of refractive 

indices a) 008.0=∆n , b) 1.0=∆n  and c) 5.0=∆n  

 The comparison of results obtained by these three 
methods is presented in Fig. 4. This comparison concerns 
coupling length LC , which is defined as the distance on 
which the field in one core decreases from its maximal 
value to zero, because of switching to the second core, 
and then increases back to its maximal value. In CMT LC 
is given by: 

 
12

1
κ

=CL  (6) 

We show the comparison for three cases, when the 
difference of refractive index between cores and cladding 
is 21 nnn −=∆  = 0.008, 0.1 and 0.5 (Fig. 4.). One can see 
that the smallest differences in the coupling length are in 
the case of index difference 008.0=∆n , so it is obviously 
weakly guiding. For a bigger value of ∆n the results 
obtained by these three methods are similar for very small 
distance between two cores (cores are close to each 
other), but for larger distances there is a big divergence 
between the results. One can observe it especially for 

5.0=∆n , which corresponds to silica cores surrounded 
by air. BPM and Neff do not yield the results so different 
from each other as CMT. Neff and CMT are several times 
faster than the 3D BPM algorithm. When the value of ∆n 
is not so large, one can use any of these two methods 
instead of 3D BPM. Also for a high step index with a 
very small distance between cores one can use CMT or 
Neff, but for longer distances one should compare all the 
three methods so as to obtain the most exact solution of 
the problem.  
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