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Abstract— In this work, the effectiveness of the convolutional neural 

network architectures AlexNet and a new proposed ResNet-based 
architecture are compared for the detection of optical aberrations in 

typical images from a Hartmann-Shack sensor, within the range of 
values associated with the average aberrations of a real eye. Both neural 

networks are trained with a dataset built from a virtual optical system 
containing more than 44,000 training, validation, and testing images. 

The results demonstrated that both neural networks were able to 
accurately predict the typical aberrations simulated for a real eye, with 

better performance for the proposed ResNet CNN. Compared to 
traditional methods such as the centroid detection method in Hartmann-

Shack images, this artificial intelligence-based approach presents itself 
as an effective and promising alternative for aberration detection where 

there are no such restrictive conditions as dynamic range, making this 
methodology and the proposed ResNet potentially applicable in fields 

such as adaptive optics and ophthalmology. 
 

 

Controlling the optical quality of physical and optical 
systems is crucial in technological, scientific, and current 

medical developments. Essentially, accurate measurement 
of optical quality is linked to adequately diagnosing an 
optical system's problems and clearly to its subsequent 

correction. This line of thinking is evident, for example, 
in fields such as optometry and ophthalmology, where the 

best correction for a visual condition is tied to the quality 
of the diagnosis made. 

Currently, detecting the optical quality of a n optical 

system is made by studying its optical aberrations, which 
can be determined from images obtained by a Hartmann-
Shack sensor (HSS) [1]. These aberrations, including 

second-order (defocus and astigmatism) up to high-order 
ones such as spherical aberration, coma , and trefoil, are 

the causes of image quality degradation in applications 
such as telescope construction and measurement of 
optical and visual quality in real eyes. 

Traditionally, methods for detecting aberrations have 
relied on image segmentation and centroid positioning 
techniques [2], which is often a laborious and error-prone 

process. In this sense, the rise of deep learning has 
enabled the initial proposal of some models aimed at 

improving the measurement of optical aberrations in 
different fields. For example, Guo et al. in [3] applied 
backpropagation neural networks to estimate Zernike 
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coefficients using centroid displacements on an HSS, 
comparing the results with traditional methods. Barwick 
proposed a hybrid astigmatic wavefront approach with 

post-processing using neural networks [4], while Li et al. 
employed neural networks to calculate centroids in HSS 
images under extreme noise conditions [5]. Hu et al. 

applied a modified U-net to directly reconstruct the 
wavefront distribution from HSS patterns with a  specific 

root-mean-square (RMS) wavefront error [6]. 
All of the previous methods demonstrate that the neural 

networks can improve the performance of the HSS. 

However, particularly in the area of visual optics, it is 
common for traditional approaches based on centroid 
detection and measurement of spot displacements in the 

HSS image to be still applied, which subsequently allow 
for the calculation of Zernike coefficients, used as a 

standard for wavefront reconstruction and therefore for 
determining the optical quality of a system. 

Taking advantage of the promising advances in the 

field of deep learning over the last decade, this article 
proposes the implementation of two CNNs: AlexNet and 
a customized ResNet architecture. The goal is to compare 

and evaluate their performance on computationally 
simulated (virtual optical system) typical images from an 

HSS obtained over a range of optical aberration values 
comparable to those found on average in human eyes [7]. 

The AlexNet CNN architecture, consisting of 5 

convolutional layers and 3 fully connected layers, is 
implemented in this work to directly predict the 18 most 
relevant Zernike coefficients (3 to 20 in OSA notation) 

for characterizing wavefront aberrations in the human eye 
from HSS images. The first convolutional layer filters the 

input with 32 kernels of size 5×5, followed by a second 
layer with 32 3×3 kernels. The following 3 convolutional 
layers use 64 3×3 kernels each. The flattened results are 

then passed through fully connected layers of 512, 170, 
and finally, 18 neurons that output the Zernike coefficient 
regression values. This architecture is similar to Li et al.’s 

work [5] but adapted to predict only the human eye’s 
representative aberration modes, enabling an end-to-end  

data-driven approach avoiding explicit centroid detection 
and feature extraction used in traditional methods. 
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Fig. 1. Architecture of the implemented CNN AlexNet. 

On the other hand, the ResNet CNN architecture, as 
shown in Fig. 2, begins with an initial block where we 
find two convolutional layers with 64 filters, each one 

with a kernel size of 5×5. In this same block, we find 
max-pooling layers, batch normalization, and the 
activation function, which is again ReLU (Rectified 

Linear Unit). Subsequently, we find the residual blocks 1, 
2, and 3, in which two convolutional layers with 64, 128, 
and 256 filters are applied in this order with identity 

mapping. The output of the first convolutional layer is 
passed through Batch Normalization and ReLU. The skip 

connections, or residual connections, are applied within 
these blocks, allowing the original input information to 
“skip” directly through the convolutional layers and 

combine with the output of those layers. This facilitates 
the gradient flow and optimizes the training process in 
deep networks. At the end of the network, we have a 

dense layer with 18 neurons that provides the predicted 18 
Zernike coefficients. To our knowledge, this exact 

architecture has not yet been implemented to analyze HS 
images for any optical system, specifically for images 

with coded aberrations associated with the human eye. 

 
Fig. 2. Architecture of the ResNet-based implemented CNN. 

The evaluation of both models was performed using the 
mean square error (MSE) cost function, taken as a 

standard for the evaluation of optical systems through the 
optical aberrations represented by the Zernike 
coefficients. ADAM (Adaptive Moment Estimation) was 

also implemented as the optimization function for both 
networks. 

For the creation of the dataset that would serve as input 

for training the networks, a  custom-made virtual optical 
system was implemented, based on Fourier optics theory 

and light propagation models, which allowed recreating 
the spot pattern map with the respective displacements 

associated with a list of Zernike coefficients. That is, it 
allowed obtaining the displacements induced by the local 

slope of the wavefront, represented by the expansion in 
Zernike coefficients, for a total of 21 Zernike terms (Zj), 
eliminating from there the piston, tip, and tilt (j=0, 1 and 

2, in a single index notation) given a list of Zernike 
coefficients with 18 terms. 

The images consisted of two groups: one with pure 

aberration terms, where only one of the 18 coefficients 
was non-zero. In contrast, the other group consisted of 

images with random combinations of the 18 Zernike 
coefficients. The ranges used were [-7,7] μm for oblique 
astigmatism, defocus, and horizontal astigmatism (j=3, 4 

and 5), while for the higher-order aberrations, coefficients 
with j=6, ..., 20 in single index notation, the range was [-
1,1] μm. These ranges were selected to evaluate the 

variability of the different Zernike coefficients within the 
average human eye. 

In total, 44884 images were generated for training, 
along with 8192 validation data sets and 2048 test data 
sets for both models. The test and validation images are 

generally different from each other. The original 
dimensions of the images were 1280×1024, but they were 
resized to 256×256 to achieve a shorter training time 

since this resizing does not compromise the model 
accuracy. The simulated pixel size was assumed to be 5.2 

μm, the pupil size was 6 mm, and the wavelength was 
0.532 μm. 

This dataset configuration provides a comprehensive 

basis for training and evaluating the performance of the 
convolutional neural network models on Hartmann-Shack 
wavefront sensing tasks. The extensive training set of 

44884 images spanning a diverse range of aberration 
patterns enables the models to effectively learn the 

complex mapping between spot displacement patterns and 
Zernike coefficients. 

Figure 3 shows the training curves. The MSE is 

displayed as the loss function on the vertical axis, and on 
the horizontal axis, the corresponding training epochs are 
shown, which were limited to 50 epochs. From the figure, 

it is clear that there is a decreasing behavior of the cost 
function for both CNNs. However, it can be seen how the 

proposed ResNet in this work always shows above the 
training line, in contrast to AlexNet, thanks to the skip 
connections that preserve the gradient norm on the 

backward path. This facilitates the preservation of the 
gradient norm, keeping this network stable and avoiding 
overfitting. 

The total training time using AlexNet with the 
aforementioned dataset was 42 minutes to complete 50  
epochs with a batch size of 32. This network was 

evaluated with the test data, and an error percentage close 
to 3.86% was obtained, and the Root Mean Squared Error 
(RMSE) was 0.073 μm. The RMSE was implemented to 
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compare the actual Zernike coefficients with the predicted 
ones in order to give an objective value in the predictive 

capabilities of the CNNs. 

 
Fig. 3. The training curve obtained for both CNNs AlexNet and ResNet . 

On the other hand, the training time using ResNet was 
2.5 hours. The percentage of error decreases considerably 
in relation to AlexNet, positioning itself at 3.02% with an 

RMSE of 0.031 μm, demonstrating better performance in 
terms of prediction capability, although with a longer 

training time, which is not a crucial factor for this work. 
This result is evident in Figs 4(a) and (b), where the 

Box-Plot is presented using the same test data set. As is 

evident, the dispersion of the differences is closer to zero 
for ResNet than for AlexNet (note the same scale). This 
conclusion is supported by the phase maps of a single 

combination of Zernike coefficients. As can be seen, 
compared to the original phase profile, ResNet presents a 

more remarkable similarity; however, from a graphical 
point of view, it can be said that both networks deliver an 
excellent representation of the wavefront. 

Figure 4 validates that both CNNs are suitable for 
expanding the capabilities of an HSS for measuring 
optical aberrations. In particular, it can be noted that it has 

not been necessary to impose restrictions regarding the 
maximum aberrations that can be processed by CNNs, 

contrary to the case of the traditional implementation of 
an HSS, where the dynamic range is a crucial factor and 
limits its use in contexts where aberrations are high, as 

can happen in eyes with high myopia or aberrations over 
telescope images, affected by significant changes in more 
active atmospheres. 

Beyond performance metrics, ResNet’s adaptability to 
different types of images adds a valuable nuance to these 

conclusions. Thus, ResNet’s ability to handle random 
images more effectively expands its applicability, 
highlighting its versatility in optical applications. These 

results agree with those of Zhang et al. [8], where a 
ResNet-based CNN (but different from our proposal) was 
also implemented. While other similar approaches exist, 

they differ significantly from our proposal. Jian et al. [9] 
use a more complex ResNet-34-based CNN, focusing 

only on astigmatism and coma aberrations for a single 
lens using diffraction patterns, excluding other aberration 
types. In contrast, Zhan et al. [10] also employs a 

complex ResNet-34 based CNN but with a zonal 

approximation, unlike our modal methodology 
implemented with the HSS. Their approach obtains 

aberration compensation directly from the point spread 
function without determining wave aberrations, which is 

the primary goal of our work. 
 

 
Fig. 4. Comparison of ResNet and AlexNet predictions. (a) and (b) Box plot 

with the difference between the actual Zernike and the Zernike predicted by the 
CNN (μm). (I) Actual phase map of a random image. (II) ResNet prediction of the 

actual phase map. (III) AlexNet prediction of the actual phase map. 

In summary, it can be concluded that the results support 

not only the applicability of CNNs for problems 
associated with the detection of typical eye aberrations 
but also show the superiority of the proposed custom-

made ResNet architecture, which has not yet been 
implemented for problems associated with visual optics. 
By virtue of this, when dealing with HSS images, ResNet 

is the best option to implement due to its residual blocks 
with skip connections. From a perspective, it is essential 

to bring these strategies closer to experimental image sets, 
where other challenges arise. It may modify the final 
performance of CNN models, including images with 

background speckle noise or dynamic changes in pupil 
sizes.  
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