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Abstract—This paper discusses the noise robustness of 

DeepOrientation, a convolutional neural network developed for fast and 

accurate local fringe orientation map estimation, enhancing full-field 
optical measurement techniques such as interferometry and holographic 

microscopy. Using neural networks to determine the final result of the 
optical measurement may raise legitimate metrological concerns, and 

therefore, we still recommend using fully mathematically sound 
solutions for both fringe pattern prefiltration and phase retrieval.  

DeepOrientation does not replace mathematically rigorous algorithms 
but supports them by providing a fringe orientation map vital for 2D 

Hilbert transform phase demodulation, requiring prefiltered fringe data 
for optimal performance. Using simulated data, we analyze 

DeepOrientation sensitivity to prefiltration noise-related accuracy and 
validate results with experimentally recorded fringe patterns.  
 

 

Optical testing techniques such as interferometry, 
holographic microscopy, fringe projection, and moiré 

techniques are among the most precise methods, offering 
rapid, non-invasive full-field measurement [1]. A feature 
that the aforementioned methods have in common is that 

they give the results in the form of a fringe pattern 
(interferogram/hologram/moiregram), where the phase 

function (optical path difference, measurand) is encoded 
in the intensity distribution (shape of fringes). Therefore, 
the information retrieval process consists of two steps: an 

opto-electronic measurement based on interferometry, 
holography and microscopy, followed by numerical 
processing to compute the intensity-encoded phase map. 

Two categories of numerical algorithms can be utilized 
for phase map demodulation: multi-frame [2] and single-

frame [3-6] methods. While multi-frame methods are 
known for their highest accuracy, they are challenging to 
implement for transient events or unstable environments, 

highlighting the necessity and significance of developing 
single-frame algorithms. Improving the accuracy of 
single-frame methods is an important issue affecting the 

overall accuracy of the measurement. It is to be 
highlighted that the fringe orientation map is essential in 

various fringe processing and analysis tasks, where it 
enables or greatly enhances the calculations [7]. The 
examples are fringe filtering (denoising) [8], fringe 

pattern boundary padding [9], fringe skeletoning 
(contouring/following/tracking) [10], local fringe spatial 
frequency (fringe period) estimation [11] and fringe 

pattern phase demodulation [12]. 
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The quantity called local fringe orientation (FO) stores 
the information about the azimuth of the vector locally 

normal to fringes [7]. It can be calculated directly from 
the fringe pattern, and it is a  modulo π indicator. From the 
definition, FO can be estimated as an arctangent of the 

orthogonal spatial derivatives of phase function φ(x,y): 
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Estimating the local fringe orientation map is inherently 
challenging because the phase function required for 
accurate orientation determination is embedded in the 

argument of a cosine function within the fringe pattern, 
making it inaccessible in direct experimental scenarios. 
Our proposed approach, called DeepOrientation [13], 

addresses this problem using a convolutional neural 
network (CNN). The network takes a prefiltered grayscale 

fringe pattern (e.g., interferogram, hologram, moirégram) 
as input, and its output is defined using a known 
simulated phase function.  

The important aspect to mention at this point is the fact 
that in some applications, the local fringe orientation map 
in the form of modulo π needs to be further unwrapped to 

its modulo 2π form – local fringe direction map. For 
accurate unwrapping, discontinuities in the orientation 

map at steps of π must be preserved. However, due to the 
nature of convolution operations in CNN, these critical 
discontinuity lines tend to blur, which cannot be entirely 

avoided despite mitigation efforts. Consequently, directly 
using the local fringe orientation map derived from Eq. 
(1) as the network output would make unwrapping to the 

fringe direction map impossible. To address this issue, we 
encode the fringe orientation map using a vectorial 

representation—two 2D matrices containing the cosine 
and sine of the orientation angle. Since the local FO map 
is defined as modulo π, we exploit the full periodicity of 

sine and cosine functions by encoding the doubled fringe 
orientation map in their arguments. These two encoded 
functions form the output of DeepOrientation, with FO 

easily accessible upon trigonometric decoding 
(arctangent). 

Using neural networks to determine the result of the 
optical measurement may raise legitimate metrological 
concerns. Therefore, for the sake of versatility and 

independence from measurement techniques, we still 
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recommend using fully mathematically sound solutions 
for both fringe pattern prefiltration and phase retrieval. It 

is worth acknowledging that the proposed 
DeepOrientation network does not supersede 

mathematically rigorous phase extraction algorithmic 
solutions but only supports them. Because we aim to 
process prefiltered fringe patterns [14], our simulated 

training dataset is free of varying backgrounds, amplitude 
modulation, and noise. This assumption was the main 
reason that we achieved a successful and universal 

learning outcome on a relatively small training dataset, 
including 2400 fringe patterns [13]. Consequently, the 

DeepOrientation input data must be prefiltered to get 
satisfactory results. In this work, we discuss the influence 
of noise on the resultant FO map estimated via the 

DeepOrientation network. 
 

Although we assumed that the data input to the neural 
network would be prefiltered to minimize noise 

effectively, it remains valuable to examine the sensitivity 
of the proposed DeepOrientation method to noise. It is 

particularly interesting to explore whether low noise 
levels have a negligible impact on the accuracy of the 
estimated FO map, potentially reducing the strictness of 

prefiltration requirements. Since the local orientation 
maps consist of the angle information, to preserve its 
periodic nature, we introduced the orientation error (OE) 

[13], which may be considered as modified RMSE, where 
the straightforward difference between the retrieved map 
and its ground truth was replaced by the sine of that 

difference. Figure 1 presents an analysis of the proposed 
method’s performance under noisy conditions, compared 
to a classical FO estimation algorithm, the combined 

plane fitting/gradient method (CPFG) [15]. Gaussian 
noise was simulated, with its intensity quantified by the 

standard deviation.  

 

Fig. 1. Comparison of the performance of the DeepOrientation approach and classical one (CPFG [5]) in the presence of noise using simulated 

fringe patterns. (a) The orientation errors of both methods calculated for different levels of noise, (b) simulated FO  map, (c), (d), (e) exemplary fringe 
patterns with no noise (std=0), medium (std=0.25) and high (std=0.5) level of noise, respectively, FO maps estimated by (f), (g), (h) DeepOrientation 

and (i), (j), (k) classical CPFG approach without any denoising and FO maps estimated by  (l), (m), (n) DeepOrientation and (o), (p), (r) classical 
CPFG approach with gaussian denoising. 
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The results clearly show that unfiltered fringe pattern 
intensity noise propagates into the estimated FO map. The 

FO map becomes increasingly obscured as noise levels 
increase, eventually completely blending with the noise. 

However, at moderate noise levels (e.g., std = 0.25) or 
with simple Gaussian filtering, it is still possible to 
achieve a high-quality FO map suitable for fringe pattern 

analysis applications. Importantly, in noisy environments, 
DeepOrientation significantly outperforms the classical 
approach, demonstrating greater robustness to noise. This 

extends the potential applications of DeepOrientation and 

allows for a relaxation of stringent data prefiltration 
requirements. The conclusions drawn from numerical 

analysis are further validated by results obtained using an 
experimentally recorded interferogram, shown in Fig. 2. 

In the case of experimental data, the reference orientation 
map was calculated from Eq. (1) using a highly accurate 
multi-frame estimated phase map. The orientation error 

for DeepOrientation was equal to 0.01 for the fringe 
pattern without the noise and 0.07 for the noisy fringe 
pattern. In the case of the classical CPFG approach, the 

orientation error was 0.01 and 0.31, respectively. 

 

Fig. 2. Comparison of the performance of the DeepOrientation approach and classical one (CPFG [10]) in the presence of noise using experimental 

data. 

The analysis highlights the superior robustness of the 
DeepOrientation method to noise, outperforming the 
classical CPFG approach, particularly under moderate to 

high noise levels. These findings suggest that 
DeepOrientation not only enhances the quality of FO 
maps but also reduces the necessity for stringent 

prefiltration, broadening its applicability to diverse fringe 

pattern analysis scenarios. 
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