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Abstract—This study explores the use of Fast Fourier Transform 

(FFT) for denoising signals from a Localized Surface Plasmon 
Resonance-based Optical Fiber (LSPR-OF) sensor. By applying FFT, 

high-frequency noise was effectively suppressed, enhancing 

measurement precision. An optimal cut-off frequency of 0.01 was 
identified for balancing noise reduction and signal preservation. Results 

demonstrated shifts in resonance wavelengths, with varying sensitivity 

across metals. The findings highlight the potential of FFT filtering to 
improve the clarity of LSPR spectrum. 
 

 

LSPR sensors are highly sensitive and widely used for 

detecting minute changes in refractive index, representing 

a significant advancement in the field of sensing [1]. 

However, their accuracy is often compromised by noise, 

which can affect measurement precision [2‒4]. To ensure 

reliable detection and accurate results, advanced signal 

processing techniques are essential for filtering out 

unwanted noise while preserving the key signal 

components. Previous work utilizing FFT for denoising 

has demonstrated various effective techniques. One such 

approach, applied to denoise an Electrocardiogram (ECG) 

bio-signal, involves subtracting a reference sine wave from 

the output signal, applying FFT to both the ECG and the 

noise replica, generating an ideal Wiener filter transfer 

function based on the noise replica, and then using inverse 

FFT to produce a noise-reduced ECG signal [5]. 

By transforming the LSPR intensity-wavelength 

spectrum into the frequency domain, the FFT enables the 

identification and suppression of high-frequency noise 

components that could otherwise distort sensor readings. 

The mathematical expression for the Discrete Fourier 

Transform (DFT) is given by: 

𝑋[𝑘] = ∑ 𝑥[𝑛]𝑒−
𝑖2𝜋𝑘𝑛

𝑁  𝑁−1
𝑛=0 , 𝑘 = 0,1,2, … , 𝑁 − 1. (1) 
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The inverse DFT, used to reconstruct the filtered signal 

in the LSPR wavelength domain, is expressed as: 

𝑥[𝑛] =
1

𝑁
∑ 𝑋̂𝑁−1

𝑛=0 [𝑘]𝑒
𝑖2𝜋𝑘𝑛

𝑁 . 
(2) 

The aim of this study is to investigate the use of FFT for 

filtering noisy signals from an optical fiber sensor based on 

LSPR. Using Python's computational tools, we develop 

and evaluate a method to mitigate noise, with a particular 

focus on disturbances caused by environmental and 

instrumental factors. This preliminary analysis seeks to lay 

the groundwork for advanced signal processing techniques 

that could significantly enhance the accuracy and 

reliability of LSPR sensors in practical applications. 

In this study, an LSPR-OF sensor was fabricated using a 

sensor probe, as illustrated in Fig. 1, featuring gold 

nanoparticles (Au-NPs) coated onto the optical fiber. The 

fabrication process began by immersing the fiber in a 

piranha solution, consisting of a 4:1 volume ratio of H₂SO₄ 

and H₂O₂, for 20 minutes. After this, the fiber was rinsed 

with deionized (DI) water and dried using N₂ gas. The 

optical fiber was then soaked in a 5% (3-Aminopropyl) 

triethoxysilane (APTES) solution, with ethanol as the 

solvent, for 90 minutes. Afterward, it was rinsed with 

ethanol and dried again with N₂ gas. Next, the Au-NPs 

were coated onto the surface of the optical fiber core by 

soaking the fiber in a gold nanoparticle solution overnight. 

Finally, the fiber was washed with DI water and dried with 

N₂ gas to remove any unattached Au-NPs. 

Heavy metals in the environment were detected using 

the LSPR-OF sensor with Au-NPs deposition. The sensing 

probe, which measured 3 cm in length, was immersed in 

the analyte solutions, as depicted in Fig. 1. A DH-mini-
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UV-Vis-NIR Deuterium-Halogen Light Source, with a 

wavelength range of 200 to 1100 nm, was employed to 

observe the optical signal. As the laser propagated through 

the probe, a resonance phenomenon occurred. Changes in 

the refractive index of the analytes led to shifts in the 

observed resonance wavelength. These spectral shifts were 

monitored using an Ocean Optics Maya 2000 series 

spectrometer. 

 

 

Fig. 1. Experimental setup for the LSPR-FO sensing system. 

 

In the data analyzer, the original dataset, stored in CSV 

format, contains a normalized intensity spectrum. Data 

processing begins by loading the CSV file and extracting 

the wavelength and intensity columns using Python’s 

Pandas library. The intensity data is transformed using the 

FFT to identify its frequency components, after which a 

filter is applied to eliminate high-frequency noise by 

setting frequencies above a defined cutoff to zero. The 

cleaned signal is then retrieved by performing an inverse 

FFT, which reconstructs the signal in the wavelength 

domain. The process involves loading the data, separating 

the wavelength and intensity columns, applying FFT to 

convert the intensity values to the frequency domain, 

filtering out noise, and using inverse FFT to obtain the 

filtered signal back in the wavelength domain. 

As shown in Fig. 2, the graphical user interface (GUI) is 

implemented using the Tkinter library, with the main 

window created via `Tk()`, defining a fixed size and title 

for the application. A label displaying the text "Denoising 

LSPR Spectrum with FFT" guides users in navigating the 

interface. The GUI features two main buttons: the 

"Upload" button, which allows users to select and load 

CSV data for processing, and the "Save" button, enabling 

the export of filtered data as CSV files. Additionally, a 

Matplotlib canvas is embedded within the GUI to display 

plots of both the original and filtered spectra after 

processing. Event handling is managed by two core 

functions: one for loading data, applying FFT-based 

filtering, and displaying the results, and the other for saving 

the processed data into CSV files for further analysis. 

To determine the appropriate cut-off frequency, we 

examined one of the generated spectra, specifically from 

the Fe 1% environment. The denoised spectrum, as 

illustrated in Fig. 3, shows a significant improvement in 

signal clarity using FFT filtering at various cut-off 

frequencies. A cut-off of 0.01 was identified as the most 

effective choice, as it offered a balance between noise 

reduction and signal preservation, aligning well with the 

Lorentzian curve. This cut-off allowed for a substantial 

reduction of high-frequency noise while maintaining 

critical signal features, which is essential for accurately 

detecting low concentrations of heavy metals. Although 

higher cut-off frequencies can suppress noise more 

aggressively, care must be taken to preserve key signal 

characteristics to ensure accurate measurements. 

Furthermore, as shown in Fig. 4, we analyzed all spectra, 

demonstrating the effectiveness of the FFT-based filtering 

technique in reducing noise across all LSPR-OF sensor 

signals. The normalized reflected intensity spectra for the 

sensor exposed to various concentrations of Hg, Pb, Co, 

and Fe revealed that the original spectra were significantly 

impacted by noise. 

 

 
Fig. 2. Graphical user interface of the LSPR-FO Spectrum Analyzer. 

 

Furthermore, after applying FFT denoising, the fitting 

curve exhibits a minimum normalized reflected intensity 

𝑅𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
𝑎𝑓𝑡𝑒𝑟

 that is consistently higher than the original 

curve 𝑅𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
𝑏𝑒𝑓𝑜𝑟𝑒

. Similarly, the resonance wavelengths 

shift after denoising, resulting in either a redshift or a 

blueshift. This wavelength shift should be carefully 

considered, as it impacts detection accuracy. Although 

most shifts are redshifts, two datasets, specifically Co 10% 

and Fe 10%, demonstrate blueshift, as shown in Table 1. 

Additionally, the sensor sensitivity can be quantified using 

the following equation: 

𝑆 =
𝜆𝑚𝑖𝑛

∗ −𝜆𝑚𝑖𝑛
0

𝑐∗−𝑐0
, (3) 

where 𝜆𝑚𝑖𝑛
∗  represents the resonance wavelength at a 

higher concentration (𝑐∗) and 𝜆𝑚𝑖𝑛
0  is the resonance 

wavelength at a lower concentration (𝑐0). 
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Fig. 3. Comparison of the original noisy spectrum and the denoised 

spectrum of Fe 1% at different cut-off frequencies. 

 

Fig. 4. Comparison of the original noisy spectrum and the denoised 

spectrum of Fe, Co, Hg, and Pb at varying concentrations. 

 

Table 1. Resonance wavelength (𝜆𝑚𝑖𝑛) and normalized reflected 

intensity (𝑅𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) before and after denoising. 

 C% Co Pb Fe Hg 

𝑅𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
𝑏𝑒𝑓𝑜𝑟𝑒

 

1 0.3780 0.3445 0.3755 0.4604 

5 0.4235 0.3151 0.4332 0.4779 

10 0.4393 0.2969 0.4029 0.4657 

𝑅𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
𝑎𝑓𝑡𝑒𝑟

 

1 0.4047 0.3660 0.4145 0.4914 

5 0.4558 0.3332 0.4715 0.5032 

10 0.4714 0.3181 0.4277 0.4933 

𝜆𝑚𝑖𝑛
𝑏𝑒𝑓𝑜𝑟𝑒

(nm) 

1 576.02 571.11 585.84 574.24 

5 579.15 571.11 591.63 571.11 

10 597.86 572.9 605.42 582.27 

𝜆𝑚𝑖𝑛
𝑎𝑓𝑡𝑒𝑟

(nm) 

1 588.96 576.02 592.07 579.15 

5 588.51 576.02 594.3 582.27 

10 591.18 580.93 597.86 583.61 

 

The measurements reveal fluctuations in resonance 

wavelength shifts. As shown in Table 1, the original data 

displays redshift with increasing concentrations of heavy 

metals, which aligns with theoretical expectations. 

However, after denoising, the resonance wavelength 

exhibits blueshift, indicating that the fitting may not be 

sufficiently accurate. Conversely, for Hg 1% to Hg 5%, the 

original data shows blueshift, while the denoised data 

results in redshift. Thus, the sensitivity observed from the 

original noisy data ranges from 1% to 10%. Among the 

metals tested, Co demonstrates the highest sensitivity at 

2.4267 nm/%, followed by Fe at 2.1756 nm/%, Hg at 

0.8922 nm/%, and Pb at 0.1989 nm/%. After denoising the 

data, however, the sensitivity values change, with Co at 

0.6433 nm/%, Pb at 0.5455 nm/%, Fe at 0.6433 nm/%, and 

Hg at 0.4955 nm/%. This variation highlights the need for 

additional data collection and analysis to ensure that the 

sensitivity accurately reflects actual measurements. In 

conclusion, the LSPR-OF sensor, combined with FFT 

filtering, demonstrates considerable potential as a valuable 

tool for environmental monitoring. The sensor's sensitivity 

to heavy metals, along with the noise reduction capabilities 

of FFT filtering, enables accurate detection and 

quantification of these pollutants, highlighting its promise 

for advancing environmental protection efforts. 
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