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Abstract—In this letter, a numerical analysis of light propagation in 
photonic crystal fibers infiltrated with liquid crystals is presented. Our 
simulations, based on the finite difference beam propagation method, 
revealed the importance of space discretization in numerical algorithms 
applied. At the conclusion, a triangular discrete mesh is shown as better 
numerical representation when compared to the standard square grid 
used for modeling photonic crystal fibers with hexagonal symmetry.  
 
 
Photonic crystal fibers (PCFs), usually formed by silica 
glass and air-holes periodically distributed therein [1], are 
an important subject for scientific investigation, arising 
mainly from their particular optical properties and a great 
number of potential applications. On the way of 
development of novel photonic elements and devices, 
special interest has been dedicated to PCFs infiltrated 
with different substances and materials. In this context, 
the choice of nematic liquid crystals (NLCs) as  practical 
and functional infiltration has been motivated by the 
variety of available mixtures with different chemical, 
physical and optical properties, inexpensive and 
consolidated fabrication technology, considerable thermal 
and electric responses, extended spectral transparency, 
huge birefringence, giant reorientational nonlinearity, and 
many others [2]. As a result, a new class of advanced 
microstructures, called photonic liquid crystal fibers 
(PLCFs), has been established, allowing for the creation 
of flexible and tunable photonic devices [3-6].  

As it is well-known, PLCFs can guide light in the glass 
core (e.g. due to the existence of the photonic bandgap), 
as well as in the region of infiltrated holes, and moreover, 
the mechanism of light propagation can be switched by 
modification of NLC refractive indices [7]. The latter 
may be achieved thermally, by applying external (electric 
or magnetic) fields, or by increasing optical power [8-9]. 
In particular, when the refractive index of an infiltrating 
material is higher than the one of the silica surround, the 
analyzed PLCFs with a spatial periodicity of refractive 
index distribution may be considered as a matrix of 
waveguide channels. This architecture, analogical to a 
multi-core optical fiber, allows for discrete light 
propagation [8-10]. 
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Fig. 1. (a) Picture of the cross-section of an analyzed PCF,         

where d is a hole diameter and Λ is a distance between neighbouring 
holes (i.e. pitch of periodic structure). (b) Temperature dependence 

of the 1550 NLC refractive indices, where no is an ordinary and ne – 
an extraordinary refractive index. The average value of the refractive 

index (corresponding to disordered (isotropic) phase) is calculated 
as: ñ=2no/3 + ne/3 [2]. The refractive index of silica glass ng

A cross-section picture of the PCF structure under 
investigation is shown in Fig. 1a. This specific host fiber, 
called LC13/7 and fabricated at the Maria Curie 
Skłodowska University in Lublin (Poland), has the form 
of  a hexagonal array of air-holes with the holey-area 
limited to  three concentric rings of the holes. The central 
hole of the periodic structure is missing, forming a solid 
glass core in the center of the fiber. Geometrical 
parameters of the fiber are as follows: the distance 
between neighboring holes Λ=6.5μm and the holes 
diameter d=3.9µm. It gives the diameter-to-pitch ratio 
(filling factor) of 0.6. As a guest material for the analyzed 
PLCF, a prototype NLC mixture, named 1550 [12], 
synthesized at the Military University of Technology and 

 is also 
presented (red dashed line) [11]. 
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composed of alkyl 4-trans-4-trans-alkylcyclohexyl 
cyclohexylcarbonate was chosen. The temperature 
dependence of its refractive indices is presented in Fig. 
1b. 

Numerical simulations were performed by 
implementing the finite difference beam propagation 
method (FD-BPM) [13] for solving electromagnetic wave 
equation (obtained with an assumption of paraxial and 
slowly-varying envelope approximation) in the following 
form: 

 2 2 2 2
0 0 0 0

E2ik n E k (n n )E
z ⊥

∂
= ∇ + −

∂
, (1) 

where k0 is a free-space wave vector, n0 is an effective 
refractive index, z is a propagation direction, E is a 
slowly-varying complex amplitude of the electric field, 
and n=n(x,y,z) is a refractive index distribution in the 
fiber cross-section. The latter may depend on the optical 
power of injected light and in our case, a standard Kerr-
like nonlinearity has been considered with a nonlinear 
refractive index: nNL=nL+n2I, where nL is the linear 
refractive index (i.e. obtained for the low-power 
excitations), n2 is a nonlinear (Kerr) coefficient and I is 
the intensity of the propagating beam. It is worth noting 
that the analyzed scalar problem described by Eq. (1) was 
simplified by assuming that the initial NLC refractive 
index distribution within PCF holes is homogeneous. 
Moreover, by supposing that infiltration of  PCFs by 
using the capillary effect results in the planar orientation 
of  NLC molecules within fiber capillaries (with possible 
enhancement by special orientation treatments [14]), an 
ordinary refractive index no of NLC was applied in 
calculations. The values of no=1.4583 for the 1550 NLC 
at room temperature, and ng

 In numerical simulations performed a Crank-Nicolson 
scheme was applied with propagation step of 0.1μm.    

=1.4563 for  silica glass at a 
wavelength of 660nm were used. 

Whereas the ordinary refractive index of the 
considered NLC is greater than for silica glass (see Fig. 
1b), the effective refractive index of the PLCF cladding is 
higher than that of the fiber core. It means that light 
propagation within the core is possible only due to the 
photonic bandgap (PBG) effect. Otherwise, discrete light 
propagation (discrete diffraction) as an effect of tunneling 
between neighboring NLC-infiltrated PCF holes (from 
here on also called NLC rods/channels/waveguides) is 
observed, as illustrated in Fig. 2. In particular, Fig. 2 
presents low-power light propagation for the Gaussian 
beam injected into the glass core of a PLCF structure with 
the results obtained for the square discrete mesh with a 
grid period of h=0.4µm. It is worth noting that the limited 
size of the holey region of the PCF causes light to reach 
the border of the periodic structure and come back to the 
central part of the fiber. As a result, the light beam is 
alternately broadening and narrowing on the way of 
propagation (as seen in Fig. 2). A detailed look at the 

intensity distributions shown in Fig. 2 reveals their 
imperfections. Unsymmetrical beam broadening 
(narrowing) seen was still noticeable for numerical 
simulations performed with a twice denser mesh grid, i.e. 
h=0.2μm (not presented here). 

 
 

      

          
Fig. 2. Beam transverse intensity profiles (i.e. ~|E|2

It has provoked additional analyses on uniform discrete 
mesh application in the FD-BPM algorithm. As it is well 
known, it is necessary to choose the proper grid shape 
and its resolution to get the best representation of a 
numerically reproduced photonic structure. It is also 
important to find the optimal grid form and its spacing 
that ensures the stability of numerical procedure with 
minimization of required computation time (keeping the 
required calculations precision). One of the possible 
approaches applied in the FD-BPM is to use the square 
grid with a resolution suited to the considered numerical 
problem. In PLCFs with the hexagonal symmetry 
analyzed here, even the application of a highly-dense 
square mesh does not help to avoid differences in 
distances between adjacent holes, along with their sizes 
and shapes obtained in the digitalization process. It is so 
mainly because of the incapability to have the center of 
each hole in a grid node when the square mesh is applied. 
The lack of symmetry in the numerical distribution of 
fiber holes and differences in hole sizes and shapes 
results in different coupling coefficients for the 
neighboring NLC rods. It means that numerically a 

) along propagation 
direction z. Numerical results presented obtained for the square-shaped 

mesh with the nods separated by h=0.4μm. 
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periodical matrix of the NLC channels does not consist of 
identical elements. It causes asymmetrical beam intensity 
distribution in the fiber cross-section on the way of 
propagation (i.e. the diffractive divergence of a light 
beam launched into the fiber core is not the same in all 
radial directions even if the structure is completely 
symmetric). 

 

square mesh h=0.2µm triangular mesh, h=0.4µm 
n2P=0.0896μm2 

  
n2P=0.0948μm2 

  
n2P=0.0999μm2 

  
n2P=0.1050μm2 

  
Fig. 3. Light intensity distribution for the propagation distance of 
2.5mm as a function of the input optical power P obtained for the 

square (left) and triangular (right) mesh. The 5µm-waist Gaussian beam 
is initially launched into the glass core of the fiber and the initial 
refractive index of NLC (i.e. for P~0) was taken as no. It is worth 

noting that for the Kerr coefficient n2=10-10m2/W the product 
n2P=0.1μm2

This problem exaggerates with the propagation distance 
and/or with optical power (see the left column of Fig. 3). 
When the power of a propagating beam increases, the 
refractive index of the excited NLC waveguides is 
modified by optical nonlinearity. Positive Kerr-like 
nonlinearity (n

 corresponds to an optical power of 1mW. The size of the 
numerical window presented is the same as in Fig. 2. 

2

To conclude, we have presented numerical modeling of 
light propagation in a PLCF structure. The results of the 
simulations performed, based on the FD-BPM (with a 
Crank-Nicolson scheme applied), have demonstrated the 
advantages of triangular mesh application (especially in 
the case of high-power light propagation) for analysis of 
photonic crystal fibers with hexagonal symmetry. 

>0) analyzed here corresponds to 

reorientational nonlinearity observed in NLCs. In such a 
case, an increase in optical power results in stronger 
guiding of light within NLC rods, which may lead to light 
self-localization. If the input beam power is high enough, 
nonlinearity balances diffractive broadening and light 
propagates in a limited region of the fiber (here it is a first 
ring of the holes). The numerical results, showing the 
influence of focusing nonlinearity on light beam 
propagation, obtained for both: square and triangular 
mesh, are shown in Fig. 3. The problem of strong 
asymmetry of beam profiles in the case of a square mesh 
may be solved by applying a triangular grid. In such a 
case it is possible to have the center of each NLC rod in a 
grid node and to have equal distances between 
neighboring holes, as well as their sizes and shapes after 
numerical representation. 
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