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Abstract—In this work we present a solution for the boundary prob-

lem for phase retrieval techniques based on the Transport of Intensity 

Equation (TIE). The solution presented here is based on the Neumann 

Boundary condition and the mirror padding scheme of the captured 

intensities. The obtained results are derived for the widely used Fourier 

Transform based TIE solver, but it is shown that they can also be ap-

plied to Multigrid based techniques.  

 

 

Quantitative phase imaging (QPI) has been used exten-

sively for visualizing hidden features of biological and 

technical samples [1–3]. For this reason, phase retrieval 

techniques have been employed in science and technology 

with a high rate of success and are still a vivid research 

field. Phase retrieval techniques based on interferometry 

allow quantitative phase reconstructions [2]. However, 

optical setups used for these techniques require coherent 

illumination, interferometer stability, and the retrieved 

phase needs to be unwrapped. Single beam phase retrieval 

techniques seek to obtain the phase of a wave-field from a 

sequence of through focus intensities [1, 4]. Within this 

family, phase retrieval techniques based on the Transport 

of Intensity Equation (TIE) [1] have gained increased 

interest because they relate the transversal energy flux of 

the phase with the axial energy flux of intensity in the 

Fresnel region by means of a linear transformation [5]. 

Moreover, TIE based algorithms give a unique solution 

plus an arbitrary constant, the retrieved phase does not 

need to be unwrapped and can be employed to partially 

coherent illumination [5]. However, a major disadvantage 

of TIE based solvers is that these algorithms are strongly 

affected by Low Frequency Artifacts (LFAs). A common 

source of LFAs in TIE methods are caused by the intrinsic 

property of amplifying low frequency noise. One solution 

to deal with this problem is to choose the proper plane 

separation strategy for capturing the intensities [6–8]. 

Reference [7] shows that for equally spaced planes there 

is an optimal distance that reduces the impact of LFAs. 

However, in order to have  efficient minimization of LFA, 

a large number of planes have to be captured. In a recent 

publication [8], it was shown that the exponential separa-

 
* E-mail: j.martinez@mchtr.pw.edu.pl 

tion strategy [8] can mitigate the LFAs on TIE methods by  

using only a few captured intensities [9].  

   Most of the literature in TIE is dedicated to improve the 

accuracy of TIE algorithms by optimizing the sampling in 

the axial direction. Often it is neglected that TIE is a se-

cond order partial differential equation and boundary con-

ditions (BC) are required to solve this equation. When the  

phase distribution does not interact with the edges of the 

field of view (FoV), the selection of the BC is not im-

portant [10]. However, for phase distributions that interact 

with the edges of the FoV, the selection of the BC be-

comes crucial to solve TIE properly. A wrong selection of 

the BC will result in strong LFAs across the retrieved 

phase that cannot be suppressed with the capturing of ad-

ditional images. In reference [10], it is shown the selection 

rules for the BC for extended phase object. However, this 

solution requires strict symmetrical properties and cannot 

be applied to more general cases. In reference [11], it is 

shown that the employment of an aperture at the object 

plane and the Neumann BC will give a proper solution for 

TIE. The work in reference [12] takes into account the 

previous considerations and implements them into a TIE 

solver based on the Discrete Cosine Transform (DCT). 

Reference [12] shows that the advantage of this approach 

lies in the fact that the NBC can be directly integrated into 

the DCT-TIE. In this work, we extend the applicability of 

the aperture and the NBC to the TIE solvers based on the 

Fourier (FT) and Multigrid (MG) approaches. We show 

that these methods can give an accurate solution for the 

Boundary problem as well. Further, we will carry out the 

corresponding simulations in order to prove that we ex-

tend the solution to the Boundary problem for the Fourier 

(FT-TIE) and the Multigrid (MG-TIE) TIE based solvers 

   Derived from the Helmholtz Equation when considering 

the paraxial approximation, TIE has the analytical 

form [5]:  

  0 ,zI k I      (1) 

where I0 is the on-focus intensity, φ is the phase and ∂zI is 

the intensity axial derivative that can be estimated using 

different methods [7, 9]. Equation (1) can be solved as a 

Solution to the Boundary problem for Fourier and Multigrid 

transport of intensity equation based solvers 
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Poisson Equation limited to a rectangular domain B [5, 7, 

12]. The BC can be defined as  

 ( ) ( ),f     (2) 

 
0 φ( ) ( ),I g


  
n

 (3) 

where Γ are the boundary values of the domain B, f and g, 

are arbitrary functions, and n is the normal vector in the 

outward direction of the FoV. Equation (2) is Dirichlet 

BC (DBC), and (3) is the Neumann BC (NBC). For the 

Periodic BC (PBC), it is assumed that the values at the 

borders of the detector are nearly similar, which implies a 

periodic flux of energy. A partial solution to deal with the 

BC problem consists in putting a complex object in the 

center of the FoV in order to have soft-edged intensity 

distribution across the boundary of the detector. When 

using this approach, the functions f and g in Equations (2) 

and (3) can be considered close to zero, and thus, any BC 

can be selected without any loss of generality. Another 

partial solution for the Boundary problem consists in ob-

serving the symmetrical properties ∂zI, and thus, selecting 

the convenient BC [10]. These two solutions rely on the 

fact that there is no leak of energy through the boundaries 

of the detector. However, these solutions cannot be ap-

plied to a more general case of extended phase objects 

that interact with the border of the detector.  

 
Fig. 1. LFA in the retrieved phase due to the improper selection of the 

BC. a) Original phase distribution. Retrieved phases when employing b) 

DBC, c) NBC and d) PBC. 

   Simulations were performed to test the FT-TIE solver 

for an extended phase object that touches the edge of the 

detector. To simulate propagated intensities, we employed 

the Angular Spectrum Method proposed in [13]. For these 

simulations eleven intensities with separations z=0, ±20, 

±40, ±60, ±80, ±100μm were captured, the pixel size is 

Δx=3.45μm, the number of pixels in the detector is 

256×256, and the phase difference is Δφ=0.5π. Further, 

the intensities are subject to Additive Uncorrelated White 

Gaussian Noise (AUWGN) with a Signal to Noise Ratio 

(SNR) of 50dB. Figure 1a shows the original phase distri-

bution. The retrieved phases for the FT-TIE method, when 

employing the DBC, NBC and PBC, are shown in Figs. 

1b, 1c and 1d with a Root Square Mean Error (RMSE) of 

0.5rad, 0.8rad and 0.45rad, respectively.  

   In order to find a solution for phase objects as the one 

presented in Fig. 1a, let P be a square aperture at the ob-

ject plane defined as 

 










Ar

Ar
P 



0

,1  (4) 

where r=(x,y) is the transversal coordinate vector and A is 

a square domain smaller than B. Thus, Eq. (1) can be re-

expressed as 

 2
0 ˆ ,zI I I n k I        (5) 

where I is the intensity inside of the aperture. Comparing 

the left hand side of (3) and the third term of (5), we real-

ize that these are the same. The purpose of this aperture is 

to enforce TIE to follow the Law of conservation of ener-

gy when the phase distribution is interacting with the bor-

ders of the FoV. For this case, it has been shown that only 

the NBC will give a proper solution to Eq. (5) [11, 12]. In 

order to solve (5), reference [12] employs a TIE solver 

based on the DCT arguing that FT approach is unable to 

give a proper solution when using NBC. This claim is 

supported by the fact that the FT based methods possess 

an intrinsic Periodic BC, and thus, only by putting the 

aperture on the on-focus plane will not modify the bound-

ary property of the FT-TIE solver. However, it is shown 

in reference [14] that the FT-TIE solver can be provided 

with the DBC and NBC through appropriate mirror pad-

ding of captured intensities. Figure 2a shows the in-focus 

intensity distribution I0 with an aperture. The black frame 

in Fig. 2a indicates that the intensity is zero for those pix-

els. For solving (5) with the FT-TIE, it is necessary to 

place the aperture on the object plane and capture the cor-

responding through focus intensities. Fig. 2b shows the 

DBC mirror padding scheme [14] for the captured intensi-

ties. The right-top and left-bottom intensities in Fig. 2b 

are mirrored and multiplied by minus one. In order to im-

pose the required NBC in the FT-TIE solver, it is neces-

sary to apply the mirror padding shown in Fig 2b to cap-

tured intensities, and thus, these images will be used to 

estimate the axial intensity derivative [7, 9]. Later on, the 

padded I0 and ∂zI will be used as inputs of the FT-TIE 

method [14].   
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Fig. 2. Mirror padding scheme [14] for imposing BC in the FT-TIE 

solver. a) Intensity distribution in the object plane with an aperture. b) 

DBC mirror padding. c) NBC mirror padding. The black frame in Fig. 

2a) indicates that the intensity is zero.  

So far, we have examined the solution of Eq. (5) for the 

case of the FT-TIE method. However, Eq. (5) can be 

solved with the Multigrid approach as well. The MG-TIE, 

unlike the FT-TIE, retrieves the phase in the spatial do-

main by modeling Eq. (1) [or (5)] as a system of linear 

equations [10]. The MG approach employs iterative solv-

ers and a series of down-sampled computational grids for 

improving the convergence of the solution [15]. An addi-

tional advantage of this approach is that the BC can be 

imposed explicitly inside of the solver without applying 

any mirror padding scheme [14] on the intensities.   

    

 

Fig. 3. Retrieved phases with the NBC. a) FT-TIE. b) MG-TIE. 

In order to investigate the accuracy and effectiveness of 

FT-TIE and MG-TIE methods, the following simulations 

were carried out when employing the aperture necessary 

for fulfill (4) and the NBC, using the same experimental 

conditions as in Fig. 1. The first method to be tested is the 

FT approach. Figure 3a shows the retrieved phase when 

employing this technique. Later on, we tested the MG 

approach. The MG algorithm can be solved employing 

several techniques for improving the accuracy of the solu-

tion  [16]. In this contribution, the Full MG algorithm 

(FMG) is used. For this solver, the number of relaxations 

and cycles used to compute the FMG-TIE were 80. Figure 

3b shows the retrieved phase when employing the MG-

TIE method. Comparing both retrieved phases (Fig. 3a 

and b) with the original phase (Fig. 1a) we found that the 

Root Square Mean Error (RMSE) is 0.03rad and 0.1rad 

for the FT-TIE and MG-TIE, respectively. This means 

that the error in the retrieved phases with an aperture de-

crease is at least 4 times lower with respect to the phases 

obtained without an aperture. The retrieved phase distri-

butions showed in Fig. 3 prove that the employment of an 

aperture and the NBC removes efficiently the LFAs. In 

Figure 3, it can be observed that some LFAs remained; 

however, these LFAs are caused by noise amplification 

and not by the BC. Finally, a quantitative comparison 

between the RMSE of Figs. 3a and 3b shows that the FT 

approach is three times more accurate.   

 

In this contribution we have presented that LFAs in the 

retrieved phase due to the BC when employing FT-TIE or 

MG-TIE technique can be overcome when using a physi-

cal aperture and the NBC. In the case of the FT-TIE 

method, we show that the captured intensities with an ap-

erture have to be mirror padded before processing them 

with the FT-TIE algorithm. In the case of the MG-TIE, we 

showed that such symmetrization is not needed and the 

captured intensities can be directly processed, minimizing 

memory requirements. With these modifications, both 

techniques have shown that the retrieved phase is accurate 

and free from boundary artifacts. 
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