http://photonics.pl/PLP/index.php/letters/issue/feedPhotonics Letters of Poland2023-04-02T19:53:12+02:00Photonics Letters of Polandletters@photonics.plOpen Journal Systems<p>PSP Photonics Letters of Poland (ISSN 2080-2242) is a new peer-reviewed web-based, open-access journal published by the <a>Photonics Society of Poland</a> and co-sponsored by <a href="http://spie.org">SPIE</a>. Journal is also supported by the Ministry of Science and Higher Education of Poland in the frame of the project 699/P-DUN/2017.</p>http://photonics.pl/PLP/index.php/letters/article/view/15-1Potential Readings of Water Turbidity Values Based on Optical Sensors on Fish-Rearing Biofloc Media2022-12-31T14:18:35+01:00Ridwan Siskandarridwansiskandar@apps.ipb.ac.idWiyoto Wiyotowiyoto@apps.ipb.ac.idSesar Husen Santosasesarhusensantosa@apps.ipb.ac.idJulie Eka Sarij_ekasari@apps.ipb.ac.idGiri Maruto Darmawangsaridwansiskandar@gmail.comAgung Prayudha Hidayatagungprayudha@apps.ipb.ac.idDerry Dardanelladerrydardanella@apps.ipb.ac.idBilli Rifa Kusumahkusumah_billirifa@unucirebon.ac.id<p>An optical sensor-based water turbidity value reader has been made with an IR-emitting light source, a red LED, and a laser. The tool is made as a solution for reading water turbidity values that are impermeable to light-intensity disturbances. In principle, each light emitter will always shoot toward the sensor. The position of the transmitter and sensor is right between the flowing water pipes. When the water flows, the sensor will read the hardness value of the water (in analog value). Of course, pipes, sensors, transmitting sources, and electronic devices are protected by a casing that is impermeable to light intensity. The casing can be placed outside the pool to facilitate the process of tool maintenance. The tool was made in the SV-IPB University hardware laboratory and tested in the SV-IPB University fish pond from April 2022 to October 2022. Tests for all emitting light sources were carried out on aqueous media which has a flock of 6 ml/l. The results show that the three transmitter sources have analog readings in the same range, namely 2200 to 2300. However, of the three, the red LED transmitter sources have consistent reading values for three replications. Thus, the red LED light emitting source has good potential to be used as an optical sensor to read the value of water turbidity in biofloc media. This was proven again in measurements using variations in flock values (5 ml/l, 6 ml/l, 12 ml/l, and 17 ml/l), indicating that the higher the flock value, the greater the resistance value, so the output voltage value is higher. small. The output voltage value can be calculated from the analog value measured by the device. <br /><br />Full Text: <a class="file" href="http://photonics.pl/PLP/index.php/letters/article/view/15-1/825">PDF</a> <br /><br /><strong>References</strong></p> <ol> <li>S.-K. Kim et al., "Different maturation of gut microbiome in Korean children", Front. Microbiol. 13, 1 (2022) <a class="file" href="https://doi.org/10.3389/fmicb.2022.1036533" target="_parent"> CrossRef </a></li> <li>S. Configuration, "Production of Marine Shrimp Integrated with Tilapia at High Densities and in a Biofloc System: Choosing the Best Spatial Configuration", fishes, 7, 283 (2022). <a class="file" href="https://doi.org/10.3390/fishes7050283" target="_parent"> CrossRef </a></li> <li>H.-H. Huang et al., "FinBERT: A Large Language Model for Extracting Information from Financial Text", Int. Conf., 1 (2022). <a class="file" href="https://doi.org/10.1111/1911-3846.12832" target="_parent"> CrossRef </a></li> <li>N. H. Sadi, D. Agustiyani, F. Ali, M. Badjoeri, Triyanto, "Application of Biofloc Technology in Indonesian Eel Anguilla bicolor bicolor Fish Culture: Water Quality Profile", IOP Conf. Ser. Earth Environ. Sci., 1062, 1 (2022). <a class="file" href="https://doi.org/10.1088/1755-1315/1062/1/012006" target="_parent"> CrossRef </a></li> <li>M. M. Rashid, A. A. Nayan, M. O. Rahman, S. A. Simi, J. Saha, M. G. Kibria, "IoT based Smart Water Quality Prediction for Biofloc Aquaculture", Int. J. Adv. Comput. Sci. Appl., 12, 56, (2021). <a class="file" href="https://doi.org/10.14569/IJACSA.2021.0120608" target="_parent"> CrossRef </a></li> <li>D. Krummenauer, A. Freitas Silva, M. Xavier, L. H. Poersch, A. Cardozo, "Comparative analysis of the culture of pink shrimp Farfantepenaeus brasiliensis and Pacific white shrimp Litopenaeus vannamei in biofloc system", Aquac. Int., 1 (2022). <a class="file" href="http://dx.doi.org/10.21203/rs.3.rs-1646196/v1" target="_parent"> CrossRef </a></li> <li>A. Suloma Mahmoud, A. H. Gomaa, M. A. A. Abo-Taleb, H. R. A. Mola, M. S. Khattab, R. S. Mabroke, "Heterotrophic biofloc as a promising system to enhance nutrients waste recycling, dry diet acceptance and intestinal health status of European eel (Anguilla anguilla)", AACL Bioflux, 14, 1021 (2021). <a class="file" href="http://www.bioflux.com.ro/docs/2021.1021-1035.pdf" target="_parent"> DirectLink </a></li> <li>M. E. Ramadani, B. Raafi'u, M. Mursid, R. H. Ash-Shiddieqy, A. T. Zain, A. Fauzan Ladziimaa, "Design and Development of Monitoring System on Carp Farming Ponds As IoT- Based Water Quality Control", ICRACOS 2021 - 2021 3rd Int. Conf., 5, 148 (2021). <a class="file" href="https://doi.org/10.1109/ICRACOS53680.2021.9701980" target="_parent"> CrossRef </a></li> <li>G. S. Carter, K. P. Kowalski, M. R. Eggleston, "Turbidity and Estimated Phosphorus Retention in a Reconnected Lake Erie Coastal Wetland", Water (Switzerland), 14, 1 (2022). <a class="file" href="https://doi.org/10.3390/w14121853" target="_parent"> CrossRef </a></li> <li>I. I. Mohamedd, N. Hikmah, B. Azizan, N. Elfadil, M. Pahang, "Design and Development of Microcontroller Based Automatic Fish Feeder System", Ijesc, 10, 25380 (2020). <a class="file" href="https://ijesc.org/upload/43e29409ebb12f4528b45c4898303eec.Design%20and%20Development%20of%20Microcontroller%20Based%20Automatic%20Fish%20Feeder%20System.pdf" target="_parent"> DirectLink </a></li> </ol>2023-04-02T00:00:00+02:00Copyright (c) 2023 Photonics Letters of Polandhttp://photonics.pl/PLP/index.php/letters/article/view/15-2Extraction and Characterization of Silica from Reeds Biomass (Imperata cylindrical) in Various Annealing Temperature2022-12-27T12:27:10+01:00Dyah Ayu Pramoda Wardanidayupwardani@mipa.upr.ac.idNeny Kurniawatinenykurniawati@mipa.upr.ac.idBudi Hariyantobudi.hariyanto@mipa.upr.ac.idNazopatul Patonah Harnazopatul@gmail.comNoviyan Darmawannoviyandarmawan@apps.ipb.ac.idRofiqul Umamegk71822@kwansei.ac.jpIrzaman Irzamanirzaman@apps.ipb.ac.id<p>Reeds biomass has been successfully extracted. It calcinated with annealing temperatures at 800 °C (A800), 850 °C (A850), and 900 °C (A900). The x-ray pattern showed that it has a cristoballite (SiO2) crystal structure. The band gap energy values are 3.8 eV, 3.7 eV and 4.7 eV, respectively. FTIR spectra show the groups are silanol, siloxane, and monohydride. Quantitatively, it provide results to determine the optical properties and dielectric functions which indicate shift to longer wavelengths with an increase in annealing temperature. The morphology gives different image where the particles are formed flakes (A800), aggregates (A850) and porous aggregates (A900). <br /><br />Full Text: <a class="file" href="http://photonics.pl/PLP/index.php/letters/article/view/15-2/826">PDF</a> <br /><br /><strong>References</strong></p> <ol> <li>A. F. Ramdja, R. A. Silalahi, N. Sihombing, "Pengaruh waktu, temperatur dan dosis H2SO4 pada hidrolisa asam terhadap kadar etanol berbahan baku alang-alang," J. Tek. Kim., 17, (2010). <a class="file" href="file:///D:/Pliki%20PSP/Photonics%20Letters/Numer%2015-1/1186.html" target="_parent"> CrossRef </a></li> <li>Z. S. Osvaldo, P. Putra, M. Faizal, "Pengaruh konsentrasi asam dan waktu pada proses hidrolisis dan fermentasi pembuatan bioetanol dari alang-alang," J. Tek. Kim., 18, (2012). <a class="file" href="file:///D:/Pliki%20PSP/Photonics%20Letters/Numer%2015-1/1186.html" target="_parent"> CrossRef </a></li> <li>I. S. Naji, N. A. Khalifa, and H. M. Khalaf, "Influence of annealing temperature on the physical properties of thin Cu2SiO4 films prepared by pulsed laser deposition," Dig. J. Nanomater. Biostructures, 12, 899 (2017). <a class="file" href="https://chalcogen.ro/899_NajiSI.pdf" target="_parent"> DirectLink </a></li> <li>M. Sahri, A. R. Tualeka, N. Widajati, "Quantitative risk assesment of crystalline silica exposure in ceramics industry," Indian J. Public Heal. Res. & Dev., 10, 601 (2019). <a class="file" href="https://doi.org/10.5958/0976-5506.2019.00358.9" target="_parent"> CrossRef </a></li> <li>A. Berendjchi, R. Khajavi, M. E. Yazdanshenas, "Application of nanosols in textile industry," Int. J. Green Nanotechnol., 1, 1943089213506814 (2013). <a class="file" href="https://doi.org/10.1177/1943089213506814" target="_parent"> CrossRef </a></li> <li>P. Y. Steinberg, "Structural and mechanical properties of silica mesoporous films synthesized using deep X-rays: implications in the construction of devices," Front. Mater., 8, 27 (2021). <a class="file" href="https://doi.org/10.3389/fmats.2021.628245" target="_parent"> CrossRef </a></li> <li>A. F. Lourenço, J. A. F. Gamelas, J. Sequeira, P. J. Ferreira, J. L. Velho, "Improving paper mechanical properties using silica-modified ground calcium carbonate as filler," BioResources, 10, 8312 (2015). <a class="file" href="https://doi.org/10.15376/biores.10.4.8312-8324" target="_parent"> CrossRef </a></li> <li>S. Begum, M. Allaudin, M. A. Qaiser, and F. KHAN, "Beneficiation of silica sand for the manufacturing of optical glass". J.Chem. Soc. Pakistan, 21, 83 (1999). <a class="file" href="https://jcsp.org.pk/ArticleUpload/1770-7859-1-RV.pdf" target="_parent"> DirectLink </a></li> <li>N. H. N. A. Hadi, A. Anuar, R. K. Shuib, "Effect of Different Salinization Methods of Silica Filler on Rubber Reinforcement," J. Eng., 15, 71 (2019). <a class="file" href="https://doi.org/10.21315/jes2019.15.2.5" target="_parent"> CrossRef </a></li> <li>K. Kayed and D. B. Kurd, "The effect of annealing temperature on the structural and optical properties of Si/SiO2 composites synthesized by thermal oxidation of silicon wafers," Silicon, 14, 5157 (2021). <a class="file" href="https://doi.org/10.1007/s12633-021-01307-w" target="_parent"> CrossRef </a></li> <li>F. Ravaux, N. S. Rajput, J. Abed, L. George, M. Tiner, M. Jouiad, "Effect of rapid thermal annealing on crystallization and stress relaxation of SiGe nanoparticles deposited by ICP PECVD," RSC Adv.,7, 32087 (2017). <a class="file" href="https://doi.org/10.1039/C7RA04426G" target="_parent"> CrossRef </a></li> <li>H. Liu et al., "Design and synthesis of carbon-coated α-Fe2O3-Fe3O4 heterostructured as anode materials for lithium ion batteries," Appl. Surf. Sci., 495, 143590 (2019). <a class="file" href="https://doi.org/10.1016/j.ultsonch.2019.03.003" target="_parent"> CrossRef </a></li> <li>M. Ghasemifard, E. Fathi, M. Ghamari, "The effect of Fe3+-doped on structure and optical properties of mesoporous Al2O3/SiO2 composite," Mater. Sci. Semicond. Process., 42, 349 (2016). <a class="file" href="https://doi.org/10.1016/j.mssp.2015.11.001" target="_parent"> CrossRef </a></li> <li>X. Lu et al., "Effect of high-intensity ultrasound irradiation on the stability and structural features of coconut-grain milk composite systems utilizing maize kernels and starch with different amylose contents," Ultrason. Sonochem., 55, 135 (2019). <a class="file" href="https://doi.org/10.1016/j.ultsonch.2019.03.003" target="_parent"> CrossRef </a></li> <li>E. W. Juni, A. Arnelli, S. Sriatun, "Pemanfaatan Surfaktan Kationik Hasil Sublasi sebagai Molekul Pengarah pada Pembuatan Material Berpori dari Sekam Padi," J. Kim. Sains dan Apl., 15, 24 (2012). <a class="file" href="https://doi.org/10.14710/jksa.15.1.24-28" target="_parent"> CrossRef </a></li> <li>F. Adam, K. Kandasamy, S. Balakrishnan, "Iron incorporated heterogeneous catalyst from rice husk ash," J. Colloid Interface Sci., 304, 137 (2006). <a class="file" href="https://doi.org/10.1016/j.jcis.2006.08.051" target="_parent"> CrossRef </a></li> <li>K. C. Wong, "Review of spectrometric identification of organic compounds." J. Chem. Educ., 92, 1602 (2015). <a class="file" href="https://doi.org/10.1021/acs.jchemed.5b00571" target="_parent"> CrossRef </a></li> <li>L. H. Abuhassan, "Enhancement of the production yield of fluorescent silicon nanostructures using silicon-based salts," Sains Malaysiana, 39, 837 (2010). <a class="file" href="http://journalarticle.ukm.my/7414/1/01_Md_Yeaminhossain.pdf" target="_parent"> DirectLink </a></li> <li>U. Kalapathy, A. Proctor, J. Shultz, "Silica xerogels from rice hull ash: structure, density and mechanical strength as affected by gelation pH and silica concentration", J. Chem. Technol. & Biotechnol., 75, 464 (2000) <a class="file" href="https://doi.org/10.1002/1097-4660(200006)75:6%3C464::AID-JCTB235%3E3.0.CO;2-C" target="_parent"> CrossRef </a></li> </ol>2023-04-02T00:00:00+02:00Copyright (c) 2023 Photonics Letters of Polandhttp://photonics.pl/PLP/index.php/letters/article/view/15-3Generating novel focal patterns for radial variant vector beam focusing through a dielectric interface2023-03-31T15:16:09+02:00Maruthasalam Lavanyalaviamar30@gmail.comDuraisamy Thiruarularulbas8@gmail.comKaruppaiya Balasundaram Rajeshrajeskb@gmail.comZbigniew Jaroszewiczmmtzjaroszewicz@post.pl<p>Electric and magnetic energy densities as well as energy flux (Poynting vector) for radial variant vector beam focusing through a dielectric interface is analyzed numerically based on vector diffraction theory. The electric and magnetic energy densities are tailored by properly manipulating the radial as well as initial phases to generates novel focal patterns in the focal area. These peculiar properties may find applications in fields such as optical trapping, optical recording, magnetic recording, and magnetic resonance microscopy and semiconductor inspection. <br /><br />Full Text: <a class="file" href="http://photonics.pl/PLP/index.php/letters/article/view/15-3/827">PDF</a> <br /><br /><strong>References</strong></p> <ol> <li>S.N. Khonina, I. Golub, "Optimization of focusing of linearly polarized light ", Opt. Lett. 36 352 (2011). <a class="file" href="https://doi.org/10.1364/OL.36.000352" target="_parent"> CrossRef </a></li> <li>V.V. Kotlyar, S.S. Stafeev, Y. Liu, L. O'Faolain, A. A. Kovalev, "Analysis of the shape of a subwavelength focal spot for the linearly polarized light", Appl. Opt. 52 330 (2013). <a class="file" href="https://doi.org/10.1364/AO.52.000330" target="_parent"> CrossRef </a></li> <li>S. Sen, M.A. Varshney, D. Varshney, "Relativistic Propagation of Linearly/Circularly Polarized Laser Radiation in Plasmas", ISRN Optics. 2013 1 (2013). <a class="file" href="https://doi.org/10.1155/2013/642617" target="_parent"> CrossRef </a></li> <li>M. Martínez-Corral, R. Martínez-Cuenca, I. Escobar, G. Saavedra, "Reduction of focus size in tightly focused linearly polarized beams", Appl. Phys. Lett. 85 4319 (2004) . <a class="file" href="https://doi.org/10.1063/1.1818729" target="_parent"> CrossRef </a></li> <li>J. Lekner, "Polarization of tightly focused laser beams", Opt. A: Pure Appl. Opt. 5, 6 (2003). <a class="file" href="https://doi.org/10.1088/1464-4258/5/1/302" target="_parent"> CrossRef </a></li> <li>H. Guo, X. Weng, M. Jiang, Y. Zhao, G. Sui, Q. Hu, Y. Wang, S. Zhuang, "Tight focusing of a higher-order radially polarized beam transmitting through multi-zone binary phase pupil filters", Opt.Express 21, 5363 (2013). <a class="file" href="https://doi.org/10.1364/OE.21.005363" target="_parent"> CrossRef </a></li> <li>C.-C. Sun, C.-K. Liu, "Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation", Opt. Lett. 28, 99 (2003). <a class="file" href="https://doi.org/10.1364/OL.28.000099" target="_parent"> CrossRef </a></li> <li>G.H. Yuan, S.B. Wei, X.-C. Yuan, "Nondiffracting transversally polarized beam", Opt. Lett. 36, 3479 (2011). <a class="file" href="https://doi.org/10.1364/OL.36.003479" target="_parent"> CrossRef </a></li> <li>P. Yu, S. Chen, J. Li, H. Cheng, Z. Li, W. Liu, B. Xie, Z. Liu, J. Tian, "Generation of vector beams with arbitrary spatial variation of phase and linear polarization using plasmonic metasurfaces", Opt. Lett. 40, 3229 (2015). <a class="file" href="https://doi.org/10.1364/OL.40.003229" target="_parent"> CrossRef </a></li> <li>Z. Chen, T. Zeng, B. Qian, "Complete shaping of optical vector beams", J. Ding, Opt. Express 23, 17701 (2015). <a class="file" href="https://doi.org/10.1364/OE.23.017701" target="_parent"> CrossRef </a></li> <li>Z. Liu, Y. Liu, Y. Ke, Y. Liu, W. Shu, H. Luo, S. Wen, "Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere", Photon. Res. 5, 15 (2017). <a class="file" href="https://doi.org/10.1364/PRJ.5.000015" target="_parent"> CrossRef </a></li> <li>Z. Man, Z. Bai, S. Zhang, J. Li, X. Li, X. Ge, Y. Zhang, S. Fu, "Focusing properties of arbitrary optical fields combining spiral phase and cylindrically symmetric state of polarization", J. Opt. Soc. Am. A 35, 1014 (2018). <a class="file" href="https://doi.org/10.1364/JOSAA.35.001014" target="_parent"> CrossRef </a></li> <li>Z. Man, S. Fu, G. Wei, "Focus engineering based on analytical formulae for tightly focused polarized beams with arbitrary geometric configurations of linear polarization", J. Opt. Soc. Am. A 34, 1384 (2017). <a class="file" href="https://doi.org/10.1364/JOSAA.34.001384" target="_parent"> CrossRef </a></li> <li>Z. Man et al, "Optical cage generated by azimuthal- and radial-variant vector beams", Appl. Opt. 57 (2018). <a class="file" href="https://doi.org/10.1364/AO.57.003592" target="_parent"> CrossRef </a></li> <li>S.S. Stafeev, V.V Kotlyar, A.G. Nalimov, E.S. Kozlova, "The Non-Vortex Inverse Propagation of Energy in a Tightly Focused High-Order Cylindrical Vector Beam", IEEE Photon. J., 11, 1 (2019). <a class="file" href="https://doi.org/10.1109/JPHOT.2019.2921669" target="_parent"> CrossRef </a></li> <li>S.S. Stafeev, V.V. Kotlyar, "Elongation of the area of energy backflow through the use of ring apertures", Opt. Commun.450 (2019) 67-71. <a class="file" href="https://doi.org/10.1016/j.optcom.2019.05.057" target="_parent"> CrossRef </a></li> <li>S.S. Stafeev, V.V. Kotlyar, A.G. Nalimov, "Energy backflow in in a tightly focused high-order cylindrical vector beam", Proc. SPIE 11025, 1102518 (2019). <a class="file" href="https://doi.org/10.1117/12.2520468" target="_parent"> CrossRef </a></li> <li>N.G. Orji, M. Badaroglu, B.M. Barnes, "Metrology for the next generation of semiconductor devices", Nat. Electron. 1, 532 (2018). <a class="file" href="https://doi.org/10.1038/s41928-018-0150-9" target="_parent"> CrossRef </a></li> <li>P. Torok, P. Varga, G.R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. I", I, J. Opt. Soc. Am. A 12, 2136 (1995). <a class="file" href="https://doi.org/10.1364/JOSAA.12.002136" target="_parent"> CrossRef </a></li> <li>P. Torok, P. Varga, Z. Laczik, G.R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation", J. Opt. Soc. Am. A., 12, 325 (1995). <a class="file" href="https://doi.org/10.1364/JOSAA.12.000325" target="_parent"> CrossRef </a></li> <li>Z. Zhou, L. Zhu, "Tight focusing of high order axially symmetric polarized beams through a dielectric interface", Optik, 124, 2219 (2013). <a class="file" href="https://doi.org/10.1016/j.ijleo.2012.06.080" target="_parent"> CrossRef </a></li> <li>J. Shu, Z. Chen, J. Pu, Y. Liu "Tight focusing of a double-ring-shaped, azimuthally polarized beam through a dielectric interface", J. Opt. Soc. Am. A 31, 1180 (2014). <a class="file" href="https://doi.org/10.1364/JOSAA.31.001180" target="_parent"> CrossRef </a></li> <li>K. Hu, Z. Chen, J. Pu., "Generation of super-length optical needle by focusing hybridly polarized vector beams through a dielectric interface", Opt. Lett. 37, 3303 (2012). <a class="file" href="https://doi.org/10.1364/OL.37.003303" target="_parent"> CrossRef </a></li> <li>B. Richards, E. Wolf, "Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system", Proc. R. Soc. London A 253, 358 (1959). <a class="file" href="https://doi.org/10.1098/rspa.1959.0200" target="_parent"> CrossRef </a></li> </ol> <p> </p>2023-04-02T00:00:00+02:00Copyright (c) 2023 Photonics Letters of Polandhttp://photonics.pl/PLP/index.php/letters/article/view/15-4Effects of Aberrations on Point Spread Function of Three Zone Aberrated Optical Imaging System with Variable Apodization2023-03-18T22:47:23+01:00Vidya Rani Salkapuramvidyaopticsphd@gmail.comAnitha Padamuttumpadamuttumanitha@gmail.comSabitha Nampallysabithanampallyin@gmail.comKaruna Sagar Dasaridasari_ks@yahoo.com<p>Presence of optical aberrations degrades the performance of the optical system. These effects can be reduced by inserting proper amplitude filters. In the current study, suitable amplitude-apodization pupils have been used for tailoring the point spread function (PSF), in order to attain full-width at half-maximum (FWHM) and suppressed side lobes. Intensity profiles for the unapodized and variable apodized cases have been considered. By comparing and analyzing the various PSFs, the effects induced by monochromatic aberrations such as defocusing effect, and the primary spherical aberration have been controlled for various degrees of apodization parameter β. The proposed apodizer is very effective in increasing the resolution of the optical systems. <br /><br />Full Text: <a class="file" href="http://photonics.pl/PLP/index.php/letters/article/view/15-4/828">PDF</a> <br /><br /><strong>References</strong></p> <ol> <li>A.N.K. Reddy, D. Karuna Sagar, Pramana, "Half-width at half-maximum, full-width at half-maximum analysis for resolution of asymmetrically apodized optical systems with slit apertures", J. Phys. 84, 117 (2015). <a class="file" href="https://doi.org/10.1007/s12043-014-0828-0" target="_parent"> CrossRef </a></li> <li>A.N.K Reddy, D. Karuna Sagar, "Spherical Aberration of Point Spread Function with Asymmetric Pupil Mask", Adv. Opt. Technol. 2016, 1608342 (2016). <a class="file" href="https://doi.org/10.1155/2016/1608342" target="_parent"> CrossRef </a></li> <li>W. Yang, A.B. Kotinski, "One-sided Achromatic Phase Apodization for Imaging of Extrasolar Planets", The Astrophys. J. 605, 892 (2004). <a class="file" href="https://doi.org/10.1086/382586" target="_parent"> CrossRef </a></li> <li>M. Kowalczyk, C.J. Zapata-Rodriguez, M. Martinez-Corral, "Asymmetric apodization in confocal scanning systems", Appl. Opt. 37, 8206 (1998). <a class="file" href="https://doi.org/10.1364/AO.37.008206" target="_parent"> CrossRef </a></li> <li>S.C. Biswas, A. Boivin, "Influence of Spherical Aberration on the Performance of Optimum Apodizers", Opt. Acta 23, 569 (1976). <a class="file" href="https://doi.org/10.1080/713819318" target="_parent"> CrossRef </a></li> <li>A.N.K. Reddy, S.N. Khonina, "Analysis of electronic parameters and frequency-dependent properties of Au/NiO/n-GaN heterojunctions", Appl. Phys. B. 124, 1 (2018). <a class="file" href="https://doi.org/10.1007/s00339-017-1483-3" target="_parent"> CrossRef </a></li> <li>D. Karuna Sagar, G. Bikshamaiah, S.L. Goud, "Defect of focus in two-line resolution with Hanning amplitude filters", J. Mod.Opt. 53, 2011 (2006). <a class="file" href="https://doi.org/10.1080/09500340600787507" target="_parent"> CrossRef </a></li> <li>M. Ruphy, O.M. Ramahi, "Spherical aberration in electrically thin flat lenses", J. Opt. Soc. Am. A 33, 1531(2016). <a class="file" href="https://doi.org/10.1364/JOSAA.33.001531" target="_parent"> CrossRef </a></li> <li>A.N.K. Reddy, M. Hashemi, D.K. Sagar, "Effects of aberrations on the point spread function and the two-point resolution with versatile apodization pupils", Pramana J. Phy. 94, P. 1 (2020). <a class="file" href="https://doi.org/10.1007/s12043-020-02016-6" target="_parent"> CrossRef </a></li> <li>A.N.K. Reddy, D.K. Sagar, "Two-point resolution of asymmetrically apodized optical systems", Optica Pura y Aplicada 46, 215 (2013). <a class="file" href="https://doi.org/10.7149/OPA.46.3.215" target="_parent"> CrossRef </a></li> </ol>2023-04-02T00:00:00+02:00Copyright (c) 2023 Photonics Letters of Poland