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Abstract — This work presents the analytical description of coupling 
two pulses propagating in phase one after the other. To do so the 
canonical method was applied. All pulses parameters are assumed to 
depend on the distance between them. Corresponding Euler-Lagrange 
equations are derived and solved. Explicit formulas describing 
oscillations of pulse parameters are obtained. 
 
 
The slowly varying envelope U(z,t) of temporal pulses 
propagating in z-direction in Kerr media is described by 
the non-linear Schrödinger equation (NLSE) [1]:   
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Let us multiply the above equation by U* and then add the 
complex conjugate of the received expression. Integrating 
the result over time we obtain dP/dz=0 with: 
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where r = |U| is the amplitude of the field. The constant 
quantity P is proportional to the pulse power. In the 
paper, instead of complex amplitude U we shall use 
amplitude and phase of the field:  
 ( , ) ( , ) ex p [ ( , )]U z t r z t i z t= ⋅ ⋅Φ  (3) 

Let us assume both amplitude and phase to be  
symmetric functions of time. Moreover let us write 
amplitude of field r(z,t) as a product of pulse height b(z) 
and shape’s function f(z,t) normalized by the condition 
f(z,0)=1. Additionally we shall take the phase with 
parabolic temporary profile: 
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Let us assume that shape function f(z,t) depends on z 
only via pulse width w(z) changing with the distance of 
propagation z. For the symmetric pair of two pulses this 
function is a sum of two components. Denoting by 
τ(z)w(z) variable distance between pulses we have: 
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The nonlinear Schrödinger equation for a pulse with 
assumed properties is not analytically solved. Instead we 
shall apply an approximate method based on the Euler-
Lagrange equations. The basic role in this method is 
played by the Lagrange density function [2-3]: 
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By integrating Lagrange density over time from minus 
to plus infinity, we get the Lagrange function: 
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Taking into account assumptions (3)-(5) we obtain: 
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In the right-handed expression prim ′ denotes 
differentiation over z while coefficients C1,..,C4  are 
overlap integrals (they are functions of relative distance 
τ(z)) defined as follows:  

 

( )

( )
( )

( )

2
1 0 0

2

2 0 0

4
3 0 0

22
4 0 0

1( ) ( 2) ( 2) ,
4
1( ) ( 2) ( 2) ,
4
1( ) ( 2) ( 2) ,

16
1( ) ( 2) ( 2) .
4

C f x f x d x

C f x f x d x

C f x f x d x

C x f x f x d x

τ τ τ

τ τ τ

τ τ τ

τ τ τ

∞

−∞
∞

−∞
∞

−∞
∞

−∞

= − + +

′ ′= − + +

= − + +

= − + +

∫

∫

∫

∫

 (9) 

Analogously, we are able to receive the Hamilton 
function, which in the case considered in the paper is: 
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Each of five evolving parameters β, θ, b, w and τ  can be 
treated as a generalized coordinate qi satisfying the Euler-
Lagrange equation ∂L/∂qi−∂(∂L/∂qi′)/∂z=0. The first of 
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these equations gives a relation between pulse width and 
height: 
 2
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This relation is identical with the expression resulting 
from (2) after substituting assumptions (3)-(5). To write 
the next equation let us denote: 
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Therefore, quantity J is connected with the pulse width, 
but because of the overlap integrals in definition (12), the 
dependence on τ of J(τ) and w(τ) is different. Applying 
J(z)=J(τ(z)), we obtain the second of the Euler-Lagrange 
equation in the form: 
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A pair of the third and fourth Euler-Lagrange equation 
after eliminating w and θ give two expressions describing 
the speed of changes of phase component β′ and the 
second derivative of the introduced function J. 
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The last of the Euler-Lagrange equations gives an 
algebraic relation between the width of pulses w and their 
distance τ. Using J instead of w we have: 
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In this way the four parameters b, θ, β′ and J (instead of 
w) are functions of the fifth τ=τ(z). In order to determine 
them as a function of propagation distance z we need to 
solve the second equation (14). This equation is possible 
to integrate once, but the form of the obtained integral is 
easier to receive if we write law of conservation of 
canonical energy H(z)=E=const: 
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By analogy to mechanics, the function V(z) may be 
treated as potential. The potential also depends on z by 
means of distance τ(z). In the explicit form it is equal: 
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The law of conservation of energy in the form (16) 
gives us the solution in the form of inverse function z(τ): 
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To find out how the result depends on τ we should 
analyze relations J(τ) and V(τ). For the profile 
f0(τ)=Sech(τ) these relations are shown in Figures 1 and 2. 

 
Fig.1. The variation of function J(τ) nad her derivative J′(τ) with 
distance between pulses.  

 

 
Fig.2. The variation of potential and his derivative with distance 
between pulses.  

Having the plot V(τ) we are able to discuss qualitatively 
function τ(z). This function obtains physical values only 
when E≤V. In the regime of small values, the distance τ(z) 
is contained between zero and a certain maximum value 
calculated at the intersection of the horizontal line 
E=const and the curve V(τ). Reaching its maximum value 
(satisfying the equation V(τmax)=E), the distance begins to 
decrease, so τ(z) oscillates. We can approximate 
analytical relation describing such oscillations if we 
expand the functions in the integrand (18) into series of 
small x. Doing so with accuracy up to x4–order terms, we 
derive: 
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In the above integral τp is point of return (τp= τmax) while 
J2, J4 and V4 are the corresponding coefficients of 
expansion of J(x) and V(x) into Taylor’s series. For 
f0(τ)=Sech(τ) these coefficients equals J2=0.2700, 
J4=0.0748 and V4=0.0054. 

The form (19) give us an approximate solution in the 
analytic form:  
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In Fig. 3 we show the plot of the obtained approximate 
solution (20) for a few first periods. Although distance 
oscillations look quite similar to harmonic ones, the 
function z(τ) could not be inversed and its shape differs 
from harmonic oscillations τ = τp⋅cos(ωz). 

 
Fig.3. The variation of the relative temporary distance τ /τp as the 
function of relative spatial distance z/z0 for τp=1 The distance unit z0 
equals: z0=−2πk2J4/√(3V4)P2ε2

2. 

The above solution enables us to determine the explicit 
formula for the period of oscillations – a quarter of this 
period is the distance between position z corresponding to 
τ=τp and the position corresponding to τ=0:  
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To find out the applicability regime of the applied 
method let us compare the obtained results and numeric 
solution of nonlinear Schrödinger equation (1) (Fig. 4). 
As a measure of accuracy of solutions (20) let us take the 
difference between the oscillation period given 
analytically and obtained numerically. Assume material 
parameters k2 and ε2 that characterize fused silica. For 
P=122 kV2⋅ps/mm2, initial width w(0)=50 fs and initial 
distance τpw(0)=62.5 fs we have Λ/2=84.9 m  from (21), 
while  numeric  results  give Λ/2 = 85.2 m  (to obtain 
distance oscillations better visible,  Fig. 4 was plotted  for  

 
Fig.4. Numeric pulse oscillations. 

much larger initial  distance τpw(0)=300 fs). Therefore the 
analytical solution (20) approximates evolution of pulse 
parameters quite well, although such a good coincidence 
works only for small initial distances between both 
components, what is the key assumption to apply the 
Taylor expansion (19). The initial height of a single pulse 
b(0) in the limit τp→0 should tend to half of the height of 
a soliton of width w(0), so the sum of two pulses is quite 
close to a single soliton with oscillating height and width. 
But even not very small value of τp (1.25 in the 
considered example) gives accuracy of analytical 
description better than 1%. Unfortunately, for a bit 
greater initial distance the difference between solutions 
rapidly increases being about 30% for τp=1.5. The reason 
of such behavior lies in the potential function – it 
possesses the vertical asymptote appearing for τcr=1.404, 
as we can see in Fig. 2, so expansion like (19) breaks 
down. 

The canonical method enable an analytical description 
of  the evolution of a symmetric pair of temporal pulses. 
Applying an adequate trial function and five pulse 
parameters we are able to write and solve all Euler-
Lagrange equations. As a result, we obtain a quadrature 
expressing the evolution of distance between pulses. 
Applying a small distance approximation we were able to 
obtain an explicit analytic formula for evolving pulse 
distance. The obtained analytical solution agrees quite 
well with numerics, although for larger initial distances 
the difference between an analytic and numeric solution 
is much higher. 
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