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Abstract—Both linear and angular momentum densities of Bessel, 

Gaussian-Bessel, and Hankel-Bessel lasers are determined. Angular 

momentum of the three Bessel beams is illustrated at linear and circular 

polarization. Axial Angular momentum is resolved in particular 

interpretation: the harmonic order of physical light momentum. 
 

 

Light angular momentum consists of orbital part 

associated with a helical wave front and spin part 

associated with polarization. The light of cylindrical 

symmetric profiles can carry both parts of angular 

momentum independently. Both angular momentum parts 

are fundamentally quantized, spin momentum indicating 

helicity states: left, right handed circular or linear 

polarization, respectively. Orbital momentum is also 

quantized per single photon and given by the topological 

charge of vortex light [1]. Spin and orbital angular 

momentum of light could be sensed physically by exerted 

optical torques.  

The light of cylindrical axial symmetry is spatially 

formed in several modes such as Laguerre Gaussian and 

Bessel light beams. The latter could be formed in three 

spatial profiles: Bessel, Gaussian-Bessel and Hankel-

Bessel beams. Bessel light is used in a wide range of 

optical applications like communications, tweezers and 

trapping [2, 3].  

The three Bessel light modes carry well defined orbital 

as well as spin angular momentum, they have been 

mentioned in several studies due to their attractive 

properties [4, 5]. Extraction of any angular momentum 

parts of the light could be technically performed, 

singularity of cylindrical laser beams with different 

polarization is also investigated [6]. However, it would be 

worth the effort to provide a general formula of total 

angular momentum densities for these light modes at 

momentum states. 

This study provides exact analytical expressions of total 

angular momentum densities of Bessel light at different 

polarization states. It gives a complete description of the 

average densities of angular momentum for linear and 

circular polarization states. Moreover; it resolves direct 

proportionality of total angular momentum to the main 

momentum.  
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Electromagnetic fields of Bessel's beams are determined 

at Lorentz gauge using cylindrical coordinates. Although 

the propagation of Bessel light beams in free space is 

considered with paraxial approximation, the used analysis 

could be extended to nonparaxial regime [7]. The 

obtained results could be generalized for other light beams 

with cylindrical symmetry, not to mention the enrichment 

to their optical applications and coding.  

The spatial electric field of a linearly polarized beam at 

Lorentz gauge is given by 
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where ),,( zu  is field amplitude,  is 

wave frequency and k is the wave number. The 

polarization is specified by arbitrary axis indicated by 

arbitrary unit vector /̂/  

Linear momentum density for a linearly polarized light is 

fundamentally given by: 
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Linear momentum density represented in terms of a unit 

wave amplitude could be represented as [8]:  
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Amplitude of cylindrical symmetric light beams are 

separable, their wave amplitude split by the exponential of 

azimuthal angle; 

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ezAzu ),(),,(  , where l is the 

azmithal parameter determining the orbital momentum 

state. Thus; linear momentum density is rewritten as   
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. Angular momentum density is 

definitely determined by  

      








 zAlzFAk

lz
l ˆˆˆ

22







 

Bessel light (B) is a non-diffracting beam of infinite 

power. It is physically non-existent even though it is 

represented by particular wave amplitude as follows [9]:  
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where CB is the normalization constant, Jl is the lth order 
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Bessel function,  is the transverse component of the 

wave vector and l is the azimuthal parameter indicating an 

orbital angular momentum state. 

A Bessel light beam is technically modified to generate 

practical modes which physically available. It could be 

either modified experimentally to Gaussian-Bessel (GB) 

[10] or to Hankel-Bessel (HB) [11] modes.  

Both Gaussian-Bessel and Hankel-Bessel light carry 

well-defined orbital angular momentum states 

independent of a polarization state. Their wave amplitudes 

in paraxial approximation are respectively represented as 

follows:  
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Rayleigh range,   
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where 
)1(

2/l
H is the l/2th order of Hankel function of first 

kind. Both linear and angular momentum densities of the 

three Bessel beams: B, GB and HB are analytically 

determined for linear and circular polarized cases in the 

following. 

Average linear momentum densities of B, GB and HB 

beams, using Eq.(3), are respectively given by:  
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Linear momentum, which is determined by integration 

over a beam profile, is only pointed at the axial direction 

(z) due to symmetry. The other two components: radial 

and azimuthal vanish. The corresponding angular 

momentum density using Eq. (4) for B, BG and HB laser 

beams is given respectively by: 
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Angular momentum of the laser beams ( L



), which is 

integration of angular momentum density over the beam 

profile, is also reduced to only an axial component.  

Unlike a plane wave beam, angular momentum of a 

symmetric cylindrical light beam is along the propagation 

axis. However; there is a transverse component of the 

pointing vector of such light beams causing azimuthal 

spiraling of their wave fronts. 

Both linear momentum and angular momentum for B, GB, 

and HB are axially oriented, they are directly proportional 

for each single beam, i.e:  
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Normalization of B, GB and HB beam profiles have been 

considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equation (10) has been mentioned before for another 

cylindrical symmetric light beam [8] but without a 

convenient physical meaning. This study proposes a 

resolution of axial angular momentum of cylindrically 

symmetrical light as is a harmonic order of its linear 

momentum. The harmonic order of light momentum is 

indicated by a well-defined angular momentum state l. 

Unlike linear momentum, the angular momentum profile, 

 

 

Fig 1. Axial angular momentum of Bessel beams at orbital angular 

momentum states l = 1 and 2, respectively. 
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which is characterized by the azmithual mode l, indicates 

the orientation of energy flux. Their intensity is visualized 

as coaxial rings.   

Axial angular momenta of the three Bessel beams are 

computed at different orbital states, the numerical results 

are plotted in Fig.1 versus normalized beam waist, w/ . 

Figure 1 shows the distribution of angular momentum 

over Bessel beams profiles, the change in the orbital state 

(l) indicates a harmonic order of beams fluxes.   

The linear momentum density, Eq. (3), of a circular 

polarized light beam is modified to include a polarization 

dependent term. It is given by [12]: 
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where 1  for the right-hand or left-hand circular 

polarization, respectively.  

Associated angular momentum densities of circular 

polarized B, GB and HB beam are given respectively by:  
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Total angular momentum is reduced again to only axial, 

z, component due to symmetry, it is pointed to the same 

orientation of linear momentum too. Axial angular 

momentum for circularly polarized B, GB, HB light 

beams is determined by the following ratio: 
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where the integration of angular momentum density is 

only performed over the z component of Eqs. (12). The 

proportionality in Eq.(13) satisfies B, GB and HB light 

beams, however, it is evaluated in details only for GB 

mode, a similar technique is applicable for both H and HB 

as well.   
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Equation (13) confirms the axial angular momentum of 

Bessel light at circular polarization. Axial angular 

momentum is interpreted as a harmonic order of physical 

light momentum pointed along the propagation axis. 

Moreover, Eq. (13) is not only compatible with the ratio 

derived for Laguerre-Gaussian light, as shown in [8], but 

also compatible with any cylindrical symmetric light. 

In conclusion, this study provides analytical 

expressions for linear and angular momentum densities for 

Bessel beams: B, GB, and HB. Bessel light beams are 

considered at linear as well as circular polarization. Axial 

angular momentum has been resolved as an interpretation 

of physical light momentum. It is just a harmonic order of 

physical light momentum. This result is applicable not 

only for Bessel light but also for an arbitrary light beam of 

cylindrical symmetry  
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