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Abstract—This paper presents an algorithm for automatic detection 

of erroneous amplitude and phase components of a sample’s optical 

field, acquired by a holographic tomograph with a limited angle of 

projection. By applying image processing methods and statistical 
analysis to find and remove unfit projections, the quality of tomographic 

reconstruction of a 3D refractive index distribution of an object is 

greatly improved. The proposed methods can find their application in 
preprocessing of data in holographic tomography. 
 

 

Limited projection angle holographic tomography 

(LAHT) is the most popular tool for 3D quantitative 

phase imaging of cells and tissues [1‒2]. LAHT provides 

a 3D distribution of the refractive index (RI) and its 

changes in biological microstructures [3]. The 

measurement process consists of acquisition of digital 

holograms of a sample with different illumination 

directions, calculating the amplitude and phase maps of 

captured projections followed by numerical 

reconstruction of the 3D RI distribution (Fig. 1). 

 

Fig. 1. Processing path in LAHT. 

LAHT configuration is well-suited for biomedical 

applications, however, it suffers from drawbacks of the 

limited angle of projection, which causes degradation of 

quality and accuracy of measurement along the optical 

axis due to the missing cone problem [1] in the object’s 

3D spatial frequency spectrum. This problem is partially 

solved by means of iterative regularization [4]. However 

this reconstruction approach is strongly dependent on the 

quality of input (error free) projections [5]. For this 

reason, and because of sheer volume of data gathered 

 
*E-mail: piotr.machnio.stud@pw.edu.pl 

during measurement, automatic methods for error 

detection must be developed. 

 Erroneous projections carry a substantial amount of 

information not associated with the object under study. 

They usually arise from low contrast of interferometric 

fringes caused by vibrations, dust particles or parasitic 

reflections, to name a few. The presence of these errors 

can, depending on their severity, degrade reconstruction 

and usually limits the effectiveness of iterative RI 

reconstruction procedures. Therefore, heavily damaged 

projections need to be removed to maximize the quality of 

reconstruction. To decide which projections should be 

removed we propose evaluating acquired data using three 

separate metrics. 

 

Fig. 2. Examples of projections: a), c) highly and weakly erroneous 

phase maps, b), d) their spectra with indicated aperture area. 

 The first proposed metric for detecting erroneous 

projections is based on the analysis of energy distribution 

within the projection’s frequency spectrum (Fig. 2). 

Holographic tomograph systems rely on clear spectrum 

representation of the sample, which requires very limited 

noise in the frequency spectrum of the recorded digital 

holograms. Because of that, the frequency range allowed 

by the aperture of the optical system can be easily 
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distinguished from the background, unless the projection 

is damaged (Fig. 2 b,d). Therefore, by comparing the 

average energy level outside of the aperture area, to the 

average energy level within the aperture area in 

projection’s frequency spectrum, and then statistically 

analyzing the calculated energy ratios of all acquired 

projections, we can estimate which projections are very 

erroneous. The said energy ratio S is calculated according 

to: 

 𝑆 =
�̅�out

�̅�in−�̅�out
 (1) 

where �̅�in, �̅�out denote average energy inside and outside 

of the aperture, respectively. In order to assess whether 

projection needs to be removed we find the median and 

the standard deviation of S within acquired dataset and 

remove projections with the S values exceeding the 

threshold. The threshold calculation method is described 

by the pseudocode: 

 

threshold = min(median + k*(median – min(S)); 

        median + k*standard deviation) 

threshold = min(max(threshold, min limit), max limit) 

 

As a base for threshold, we use either the difference 

between median and minimum obtained ratio or standard 

deviation of ratios, whichever produces the lower 

threshold. This two-way approach proved to work 

properly on various measurements with ranging quantities 

of erroneous projections. Factor k controls the sensitivity 

of detection (when k grows sensitivity declines) and can 

be changed by a user. In our case, k=2 proved to be 

sufficient. Additionally, we introduced minimum limit and 

maximum limit of threshold, which are also controlled by 

the user. The minimum limit ensures that we do not 

remove projections which are still good but happened to 

be in dataset with projections of mainly pristine quality. 

On the other hand, maximum limit is introduced in a case 

where the majority of projections is erroneous, and the 

threshold calculated on their basis is too high. In the case 

of our system, the values of 0.5 and 1.2 for minimum limit 

and maximum limit respectively were optimal. The above-

described metric alone provides very good results, as it 

reliably detects completely destroyed projections which 

are the most harmful to the reconstruction. However, 

weakly erroneous phase projections, like the one 

presented in Fig. 2c, do not have a noisy spectrum (Fig. 

2d) and can be not identified. Thus, we propose two 

additional methods which successfully complement the 

abovementioned algorithm. 

 The second method is based on the analysis of present 

high phase gradients in the projection. We use Prewitt’s 

method of detecting gradients in x and y directions, and 

then calculate total gradient magnitude [6]. The phase 

unwrapping algorithm allows for jumps of phase of up to 

|π| radians per pixel. Using that knowledge we can specify 

a maximum allowable gradient, and then calculate the 

sum of gradients exceeding the said limit within every 

projection. The obtained sum is expressed as relative to 

the total pixel count of the projection to compensate for 

various resolution. The resulting value is compared to the 

user specified threshold. Projections with higher gradients 

sum than the threshold are removed. In our case the 

threshold of 0.015 was optimal. The described method 

allowed us to detect projections with local phase errors, 

like those presented in Fig. 2c. 

 The final metric for detecting erroneous projections is 

based on searching for amplitude distributions which are 

significantly different than average in the given dataset. 

We noticed that extreme values of amplitude often 

coincide with erroneous phase (Fig. 3).  

 
 

Fig. 3. Projection detected with amplitude metric: a) amplitude, 

b) corresponding phase, c) median amplitude and d) spectrum. 
 

To quantify the difference between each projection and 

average projection, we first calculate the median 

amplitude projection and then use it as a reference for 

calculating RMS differences. This approach for 

quantifying differences has limited reliability due to the 

fact that, depending on the measured object, some 

amplitude distributions vary significantly as the 

illumination direction changes, which in turn results in 

high fluctuations of obtained RMS differences. To 

overcome this problem, we include the range of RMS 

fluctuations in threshold calculations. The formula for 

obtaining threshold is as follows: 

 

 𝑇 = 𝑄75 +𝑚 ∗ (𝑄75 − 𝑄25) (2) 

 

where Q25 and Q75 are the 25-th and 75-th percentile of 

RMS differences respectively, and m is the user specified 

parameter for controlling the sensitivity of the metric 

(greater m reduces sensitivity). We recommend the value 

of m to be in the range between 2 and 3. The projection 
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presented in Fig. 3c was detected with this method – 

damages present in phase are also visible in the 

amplitude. This metric is particularly effective in 

detecting projections which do not contain much of high 

phase gradients and have approximately constant 

amplitude distribution with respect to illumination 

direction. 

 After sifting the dataset with the above described 

metrics, we sort the erroneous projections within each 

metric and delete all of them or until the specified limit is 

reached (limit can be set by user, up to 30% number of 

projections by default), as removing too many projections 

also negatively impacts the reconstruction, especially if it 

leads to uneven filling of the spectral domain [7].  

 
Fig. 4. Reconstructions: a) original, b) after using spectrum metric only, 

c) after using all metrics, d) refractive index along diagonal marked on 

panel a). 

 The described algorithm allowed for significant quality 

improvement of reconstruction of measurements, which 

contained very erroneous projections. The removal of 

these projections is crucial, as we can see in Figs. 4a and 

4b. In the case of slightly damaged projections, it is not 

obvious which projections should yet be removed and 

which not, as we must consider the loss of information 

contained by the non-damaged part of a projection. In the 

case presented in Fig. 4c, we had errors accumulated in 

the lower left corner of the reconstruction, due to the 

phase unwrapping errors in around a dozen of projections, 

as seen in Fig. 2c. The removal of these slightly damaged 

projections did not improve the quality of reconstruction 

and resulted in noticeable local changes. Overall impact 

on the reconstruction, of projections similar to the one 

presented in Fig. 2c, is highly dependent on the amount of 

damages, their severity, as well as location. If damages 

appear repeatedly in certain region of projections, then 

their effect accumulates in reconstruction, but if damages 

are not severe and scattered in projections, their effect on 

reconstruction can be negligible. In the ideal case, a set of 

projections which ensure the best possible quality of 

reconstruction should be passed to the reconstruction 

algorithm. As currently there is no objective and 

definitive method for assessing where is the boundary 

delimiting projections which yet should be removed from 

the ones which should not, we included a few users 

controlled parameters in the algorithm. Those parameters 

control the sensitivity of each metric giving the user a 

possibility of adjustments as needed. To give an example, 

one can have lower screening sensitivity when dealing 

with smaller datasets where the reconstruction quality is 

limited by the measurement time and noise level, or 

higher sensitivity when more projections are available and 

the objective is to achieve the best possible quality.  

 Overall, the designed algorithm significantly improves 

the quality of reconstruction whenever badly erroneous 

projections are present in the dataset making the most of 

the originally acquired data.  

The described methods are useful not only for the 

screening of holographic projections captured in LAHT 

systems, but they can be also implemented for other 

techniques that rely on capturing large datasets of similar 

complex fields, such as long time-lapse monitoring at 

digital holographic microscopes or cameras. 
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