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Abstract—Biometric systems are becoming more and more efficient 

due to the increasing performance of algorithms. These systems are also 
vulnerable to various attacks. Presentation of falsified identity to a 

biometric sensor is one of the most urgent challenges for the recent 
biometric recognition systems. Exploration of specific properties of 

thermal infrared seems to be a comprehensive solution for detecting face 
presentation attacks. This letter presents the outcome of our study on 

detecting 3D face masks using thermal infrared imaging and deep 
learning techniques. We demonstrate the results of a two-step neural 

network-featured method for detecting presentation attacks. 
 

 

Face recognition systems are being challenged by 
several diverse malicious attacks. One of the most popular 

nowadays exploits someone else’s identity presented to  
the biometric sensor. Face presentation attacks are 
relatively easy to carry out, even with printed 

photographs. More advanced presentation attack detection 
(PAD) methods are being developed in response to  new 

presentation attacks introduced. The PAD m ethod pu t 
forward herein is designed to utilize specific spectral 
features of thermal infrared imaging. 

The aim of this paper is to present the outcomes of 
research into detection of various face presentation 
attacks in thermal infrared. An analysis o f  p resen tation 

attacks using novel 3D-printed and custom f lex ible 3D-
latex masks is provided. The distribution of thermal 

radiation emitted by the face has been studied, 
particularly emission variation between specific 
landmarks of the face and neck. The paper p resents the 

design of a PAD method together with validation results. 
A variety of presentation attack detection methods have 

been proposed, mainly operating in the visible light 

domain [1–4]. Another pertinent attack predictor might be 
the display of subject heat emission, which is a  distinctive 

quality of thermal infrared [5–7]. Still, on the grounds o f  
apparatus availability, the visible light domain  is  so  f a r 
predominant in current research, while the thermal 

infrared spectrum has received barely moderate attention. 
Presentation attack might be detected with  a  thermal 

infrared camera as a result of comparing thermal 

emissions from bona fide with impostor faces. The 
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thermal camera is a proper choice for a face presentat ion  

attack detector due to its ability to quantif y th e thermal 
energy of the subject. It is expected that heat emission  of 
subject mounting presentation attack may change over the 

presence of the presentation attack instrument (PAI). The 
presentation attack instrument acts as an optical filter 
which limits the amount of energy reaching the imager. 

The detection of face presentation attacks in  thermal 
infrared has been addressed in several works, though 

mostly exploring multi-channel mode combined with  a  
visible light range. Sun et al. [8] proposed a liveness 
detection approach based on thermal infrared and visib le 

spectra. The detection method uses a canonical 
correlation analysis (CCA) between a visible and thermal 
face. The results show that the method obtains a live 

detection rate of 85.1% and 90.8%, including and 
excluding glasses with a false acceptance rate o f  0 .1%. 

Other methods include a thermal face-convolutional 
neural network (Thermal Face-CNN) with External 
Knowledge [9]. The external knowledge is based on the 

calculated temperature of a subject’s face. The face 
liveness detection relies on absolute temperatures 
registered by a thermal camera fused with visib le ra nge 

images. Precise measurement of temperature with a 
thermal camera is difficult in an unconstrained 

environment. The proposed method obta ined the best 
accuracy of 0.7918 with the recall of 0.7434 and precision 
of 0.8298. George et al. [10] proposed a Mult i-Channel 

Convolutional Neural Network (MC-CNN) tested with 
grayscale, depth, infrared, and thermal infrared im ages. 
The proposed method was reported to obtain an Average 

Classification Error Rate (ACER) of 2.59% a nd 0 .84% 
for thermal imaging and a combination of Grayscale, 

Depth, Infrared, and Thermal, respectively. This m ethod  
obtains high results when using several channels together 
and should not be considered in a single-channel 

configuration. 
Current efforts in the field of PAD algorithms are 

focused on new methods that will accurately cover known 

and unknown attacks. Generalization is one o f  the m ost 
significant challenges for current PAD algorithms, as they 

are biased towards the training data. 
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The presentation attacks addressed in  th is study a re 
performed using two types of 3D facial masks. The f irst  

type corresponds to facial masks made of hard resin 
manufactured during the 3D printing process. These 

masks cover only the facial region; they are inflexible and 
thus  do not fully adhere to facial shapes. The masks a re 
customized, printed being based on a 3D model generated 

according to 2D photographs of the subject’s face. 
The second type of mask is a full-face mask made of  

flexible foam-latex, rendering realistic men faces. The 

latex masks cover the entire head together with the neck. 
The inner surface of masks is adhesive, hence the masks 

may hold well without additional support  when put  on. 
The masks are designed with holes in eyes, nose, and 
mouth locations. Sample images of facial masks are 

presented in Fig. 1. 
 

 
 (a)  (b)  

Fig. 1. Images of the 3D-printed mask (a) and latex mask (b). 

Thermal infrared imaging takes advantage o f cap turing 
the relative distribution of apparent temperature of objects 
located in the field of view. Quantitative analysis of 

thermal energy is defined by the noise equivalent 
temperature difference (NETD), which directly 
determines the camera ability to detect a  slight difference 

in temperatures. During this study, a long-wavelength 
infrared camera operating in 7–14 µm has been used. The 
imager is equipped with an uncooled micro-bolometer 

focal plane array with NETD of 50 mK (at 300 K). 

The range of PAIs used in this study includes f acial a s 
well as full-face masks. Since each PAI introduces a 

change of heat emission, it may be detected by 
differential analysis of a bare face and a  covered f ace. 
Analysis of heat distribution should be then performed in  

the regions of interest containing the surface o f  the f ace 
and neighboring areas. Sample images presenting subjects 

wearing two types of masks are shown in Fig. 2. Analysis 
of collected thermal infrared images offering subjects 
wearing different masks in various configurations has led  

to the proposition of a method to detect 3D facial masks.  
The proposed method detects attacks in a two-step 

manner. The first step of the algorithm is to detect the 

head and to determine the coordinates of a region of 

interest (RoI) corresponding to the head itself. In the 
second step, a trained classification algorithm perf orms 

the classification of the detected RoI. The head detection 
has been done using the Faster R-CNN [11] algorithm 

trained with thermal infrared and visible range face 
images. Faster R-CNN computes candidate regions by  a  
fully convolutional region-proposal network. The Faster 

R-CNN algorithm may work with different 
parametrization networks. In this study,  the ResNet-50  
network [12] has been used for parametrization within the 

Faster R-CNN algorithm.  

   
 (a)  (b)   

 

 (c) 

Fig. 2. Sample images of presentation attacks; subject wearing 3D 
printed mask latex masks (a), a subject wearing the 3D-printed mask (b), 

genuine subject (c).  

The region of interest is analyzed to detect differences 

between a real face and an attack. The head images 
extracted from original images are passed to a deep neural 
network for presentation attack detection. The analysis o f 

facial heat maps to detect facial masks is proposed  to  be 
done with the ResNet-50 network. The ResNet network 
works as a  typical classifier with two neurons at the f inal 

classification layer. Because the attack detecto r m odule 
was designed to operate fully autonomously, the 

optimizer loss function was set up to maximize the 
classification confidence score [13], subject to the clerical 
review area being empty in the training process. As bo th  

types of statistical errors are considered uniform in terms 
of cost, the decision boundary ensues, located precisely at 
0 value of the log-likelihood ratio of attack to bona f ide, 

which effectively renders the classifier follows the 
canonical Bayesian approach. 

To achieve high detection performance, the cla ssifier 
has been trained with a wide range of images of high 
variability. The CNN has been pre-trained on an 

ImageNet dataset containing visible domain im ages and 
fine-tuned on a variety of thermal images presenting 
actual samples, as well as spoofed samples. The subset 
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containing actual samples has been supplemented with  
images showing subjects after expending physical effo rt. 

Our analysis revealed that the subject’s face could change 
significantly after a  physical struggle. When  the f ace is 

wet with sweat, the apparent temperature registered by a 
thermal imager decreases and starts to resemble the 
attacker’s face. 

The dataset has been divided into training, test, and 
validation sets with a split ratio of 70% (4900 images), 
10% (700 images), and 20% (1400 images), respectively .  

Each part of the algorithm has been validated separately, 
beginning with the performance assessment of its first 

step, namely the RoI extraction  component. The head  
detector is validated in terms of detection rate and f alse 
detection rate. Validation results of a head detecto r are 

presented in Table 1. 

Table 1. Validation results of head detector1. 

Method 

3D-printed Latex 

Det. 
Rate 

False 

Det. 
Rate 

Det. 
Rate 

False 

Det. 
Rate 

Faster R-CNN 

+ ResNet 50 
1.00 0.00 1.00 0.00 

1 Absolute values are given in the range between 0 and 1. 
 

The following component has been validated with  the 

next two PAD metrics: attack presentation classification 
error rate (APCER) and bona fide presentation 
classification error rate (BPCER). APCER corresponds to 

the proportion of attack presentations misusing the same 
PAI species classified as bona fide presentations in a 

specific scenario (False Negative Rate). At the same time, 
BPCER stands for the proportion of bona fide 
presentations incorrectly classified as attack presentations 

within a particular scenario (False Positive Rate). 
For deep learning classifiers, we have applied two 

training and validation schemes. In the f irst  one, a  ten-

fold cross-validation technique was applied. 70% of a ll 
images selected randomly were used as the t ra ining set  

(4900 images), while the remaining 30% constituted the 
testing and validation sets with a split ratio of 10% (700 
images) and 20% (1400 images), respectively. The m ean 

results of the 10-fold cross-validation are presented in 
Table 2. 

Table 2. Results of 10-fold cross-validation. 

Method 
All 

APCER1 BPCER1 

ResNet-50 0.000 0. 000 

1 Absolute values are given in the range between 0 and 1. 

For the second validation approach, the unknown-attack 
scenario was exercised to verify the proposed method 

generalization capacity. During the unknown-attack 
validation, training and testing splits were based on PAI s 
employed in the training phase. Under all the unknown-

attack scenarios, images featuring attacks with one type of 
PAI were dispatched to the classifier for its training, a nd  

the remaining representing different PAIs were held  ou t 
for testing. The latter group of images not applied to 

training is considered “unknown”. The results of 
unknown-attack validation are presented in Table 3. 
 
Table 3. Results of unknown-attack validation1. 

Method 
3D-printed2 Latex3 

APCER BPCER APCER BPCER 

ResNet-50 0.001 0.001 0.010 0.01 
1 Absolute values are given in the range between 0 and 1. 
2 Model trained on all masks except 3D-printed. 
3 

Model trained on all masks except Latex masks. 

 
The analysis of the results indicates that both steps of the 

algorithm achieve high performance. The head detect ion 
algorithm advertises zero error rate. The analysis of 
thermal distribution demonstrates impressive performance 

in the 10-fold cross-validation and unknown attack 
validation. The experiments in the unknown attack 

scenario show some disproportions between detection 
performance across different attacks, noting that  a  f u ll-
face latex mask disguise is more challenging to detect. 

Thermal infrared imagers furnished with specific 
algorithms may be considered very efficient detecto rs o f 
presentation attacks.  
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