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Abstract — In this paper, we seek special soliton solutions of so-called 
Higher-Order Nonlinear Schroedinger Equation, which describes the 
propagation of light waves in nonlinear optical media. Using a developed 
Jacobi elliptic function expansion method described in [8], we show that 
in the case of four-order dispersion these traveling wave solutions do not 
exist. As a byproduct, we regain the results obtained by other authors [8, 
9] for the case when only the dispersion to the third order is taken into 
account.  
 
 

1. Introduction 

It is well known that a great deal of physical processes 
involved in a given nonlinear problem may be understood 
in terms of formation of spatial, temporal or spatiotemporal 
localized structures or solitons. Being a true high-
technology application of these mathematical objects, 
optical solitons have been the objects of intensive 
theoretical and experimental studies in the past several 
decades due to their potential applications in long distance 
communication and all-optical ultrafast switching devices.  
Generally speaking, they are special solutions of the so-
called Higher-Order Nonlinear Schroedinger Equation 
(HNLS), which describes the propagation of light waves in 
nonlinear optical media. As a result, it gives us the input-
and-output causal relation for light waves in optical fibers. 
In literature, there is no systematic way of deriving the 
propagation equation for light waves in nonlinear media for 
arbitrary orders of dispersion, diffraction and nonlinearities 
in an arbitrary medium. In [1] we presented a method of 
derivation for this propagation equation in a nonlinear 
differential form. As a special case, we introduced this 
equation systematically in [2]. 

The study of the above-mentioned localized waves 
(solitons) is a difficult task, as nonlinear partial differential 
equations (PDEs) of a given system are usually not 
integrable. By investigating the integrability of a nonlinear 
PDE, one gains crucial insight into the structure of the 
equation and nature of its solutions. With the exception of 
some analytical solutions obtained by well-known methods 
(inverse scattering method, Hirota's method [5], Jacobi 
elliptic function expansion method [8]), solitary wave 
solutions have to be determined numerically [6]. One of the 
most effective methods is the Fourier Split-Step method 
which is used in studying the dynamics of short-pulse 
splitting in dispersive nonlinear media [3, 4]. In some 
cases, we should use analytical and numerical methods 
simultaneously [7]. 

In this paper, we seek special soliton solutions of 
HNLS, namely exact traveling wave solutions ([5], Chapter 
7). As it has been emphasized in [8], these solutions are 
some of the most fundamental objects of study in 
mathematical physics. Using a developed Jacobi elliptic 
function expansion method described in [8], we show that 
in the case of four-order dispersion these traveling wave 
solutions do not exist. Hence, for ultrashort pulses, it is not 
necessary to include orders of dispersion which are higher 
than three to obtain solutions of this type. As a byproduct, 
we regain the results obtained by other authors [8, 9] for 
the case when only the dispersion to the third order is taken 
into account.  

Our paper is organized as follows. In Section 2, 
following [8] there is a short description of the developed 
Jacobi elliptic function expansion method. In Section 3, by 
using this method for the HNLS with the four-order 
dispersion, we show that traveling wave solutions do not 
exist in this case. We also regain dark and bright solitons 
obtained by other authors [8, 9]. The last section contains 
our conclusions. 

 
2. Developed Jacobi elliptic function expansion 

We consider a nonlinear partial differential equation in a 
general form 
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We seek the traveling wave solutions of the form 

      ,, 0xtcxeuF tkxi    

                           (2.2) 

where u() is a real function,  is a constant parameter and 
k and  denote the wave number and frequency, 
respectively. Substituting (2.2) into (2.1) we obtain an 
ordinary differential equation 
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We take the ansatz of the solution in the form of a finite 
series of Jacobi elliptic functions cn(,m)(or sn(,m)), i.e.    
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in which aj are constants which will be determined later 
and the highest degree of the function u is   
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   nuO  .                                         (2.5) 

It follows from the properties of Jacobi elliptic functions 
that the highest degree of derivatives is taken as 

  pndudO pp  )( .                            (2.6) 

n in (2.4) is selected in such a way that the highest degree 
of derivatives is equal to the degree of the nonlinear term. 
Substituting (2.4) into (2.3) and equating the coefficients of 
all power of cn(). sn(), dn() to zero leads to a set of 
algebraic equations for aj. By solving these equations, we 
obtain the final result for u in the form (2.4). 
  
3. The higher-order propagation equation 

   As it has been emphasized in Sec. 1, a systematic 
derivation for light propagation equation in a nonlinear 
medium is given in [1, 2]. In the case of ultrashort light 
pulses (femtosecond pulses which have much potential for 
future technology), in comparison with the nonlinear 
Schroedinger equation (NLS), higher-order terms should 
be taken into account. For this reason, we consider the 
modified NLS equation in the form 
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where the real parameters i (i=1,...,6) have the following 
physical interpretations: 1corresponds to the group 
velocity dispersion (GVD), 2 to the four-order dispersion 
(FOD),  3 to self-phase modulation (SPM), 4 to third-
order dispersion (TOD), 5 to self-steepening (SS) and 6 
to the self frequency shift (SFS) arising from stimulated 
Raman scattering (SRS). In order to find traveling wave 
solutions of Eq.(3.1), we use the developed Jacobi elliptic 
function expansion method described above. Firstly, we 
write the electric field in the form           

              0,..exp, zzcttkziutzE   .     (3.2) 

Substituting (3.2) into (3.1) we obtain 
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Separating the real and imaginary parts of this equation 
leads to the following system of equations 
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Now using developed Jacobi elliptic function expansion 
method described in Sec. 2 we calculate the highest degree 
of derivative  O(d4u()/d4)=n+4 and the degree of the 
nonlinear term O(u3())=3n. Equating these numbers leads 

to n = 2. It follows that the function u() can be obtained 
from the form 

          2
210 cnacnaau  .                (3.5) 

For the sake of simplicity, we suppose that a0=a1=0, then 
u()=a2cn2(). Substituting this expression into Eq. (3.4b) 
gives   
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where coefficients Ai contain different parameters involved 
in the problem. Equating the coefficient of the first term in 
(3.6) to zero leads to A6 = 482c

4a2m
4+242c

4a2m
2=0. 

Because a2, m, c should be different from zero, we have 
α2=0. This means that if the term FOD is taken into 
account, the traveling wave solutions do not exist. We 
conclude that for the existence of solutions in this type, the 
orders of dispersion higher than three should not be taken 
into account. Then we can rewrite (3.4a) and (3.4b) in the 
form (with 2=0) 
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Differentiating two sides of Eq. (3.7b) with respect to the  
gives us  
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Comparing (3.8) with (3.7a) leads to formulas for  and k:  

      1
65443651 6323   ,   (3.9) 

     4
32

11
2

4
4

3
1 


 cc
c

k .    (3.10) 

Then Eqs. (3.7a), (3.7b) reduce to 

   0" 3  BuAuu ,                                    (3.11) 
where  
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Now, we use the formalism described in Sec.2 for the 
Eq.(3.11). Firstly, we calculate O(d2u/d2)=n+2 and 
O(u3())=3n. Then n=1 and we can write u() in the 
following form: 

        cnaau 10  .                                      (3.13) 

Substituting (3.13) into (3.11) and equating the coefficients 
of all powers of cn() to zero yields the values of unknown 
parameters a0, a1, c, . We have performed this step by 
MAPLE and obtained: 
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while c is an arbitrary constant and m is the modulus 
number of the Jacobi elliptic functions. Then the traveling 
wave solutions of the propagation equation (3.1) have the 
following form  
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where the expressions for k,  are given by (3.9) and 
(3.10). When m tends to 1, we obtain a bright soliton 
solution 
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Now instead of (3.13) we use the ansatz  
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By substituting (3.17) into (3.11) we obtain                
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while c is also an arbitrary constant. Then the solution of 
Eq.(3.1) has the following form: 
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where the expressions for k,  are given by (3.9) and 
(3.10). When the modulus number m tends to 1 we have a 
dark soliton solution in the following form: 
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Our expressions (3.16) and (3.20) are just the results 
previously obtained by several authors (e.g. the formulas 
(56), (58) in [8] and (9), (12) in [9]). We demonstrate these 
for some values of parameters involved in Figures 1-4.  
 
4. Conclusions 

     In our paper we used a developed Jacoby elliptic 
function expansion method to find traveling wave solutions 
for HNLS which describes light propagation in fibers. We 
showed that we cannot have solutions of this type when we 
include higher orders of dispersion. As a byproduct, we 
obtained in a simple way bright and dark soliton solutions 
discovered before by other authors.  

 

 
Fig. 1: Bright soliton (3.16) with c =2, 1= - 0.5, 3 =1, 4=1/24, 5=0.8, 

6=0.5 and z0=0. 

 

 
Fig.2. Bright soliton (3.16) with c =3, 1= - 0.5, 3 =1, 4=1/24, 5=0.8, 

6=0.5 and z0=0. 

  

Fig.3. Dark soliton (3.19) with c =2, 1= -0.5, 3 =1, 4=-1/24, 5=0.8, 
6=0.5 and z0=0. 

 

Fig.4. Dark soliton (3.19) with c =3, 1= 0.5, 3 =1, 4=-1/24, 5=0.8, 
6=0.5 and z0=0. 
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