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Abstract—In this paper the application of massively parallel 
processing of Spectral Optical Coherence Tomography (SOCT) data 
with the aid of a low-cost Graphic Processing Unit (GPU) is presented. 
The reported system may be used for real-time imaging of high 
resolution 2D tomograms or for presenting volume data. The overall 
imaging speed is over 100 frames/second for 2D tomograms built of 
1024 A-scans and 9 frames/second for 3D volume images containing 
100 slices of 100 A-scans. This includes t he acquisition of 2048 pixels 
from a CCD camera per A-scan, data transfer to the processor, all 
necessary processing and rendering on the screen.  As a contribution, the 
description of a data flow and parallel processing organization in a GPU 
is given. 
 
 
Optical Coherence Tomography is based on white light 
interferometry and is a non-invasive technique of imaging 
internal structure of objects. It has been successfully 
applied for in-vivo examination of the eye [1-2] and other 
objects that weakly absorb and scatter light [3]. A narrow 
beam of light of high spatial and low temporal coherence 
is directed to the object. The light backscattered and/or 
reflected at elements of its internal structure is collected 
and brought to the interference with light propagating in 
the reference arm of the Michelson interferometer. The 
signal is registered in the spectrometer and post-
processed, essentially by taking a Fourier transformation. 
This way a single, vertical line (an A-scan) of the 
tomogram is recovered. To obtain a cross-sectional image 
(a B-scan) the examining beam is scanned over the 
surface of the object. By repeating this scanning 
procedure line by line with a shift in the direction 
perpendicular to the scanning direction, volume data may 
be collected.  

One of the significant limitations of this technique is the 
time of data processing, usually longer than data 
acquisition. It limits real time volume imaging to a small 
amount of A-scans which decreases picture quality.  
Recent progress in massive parallel processing gives an 
interesting solution to this problem. Lately developed 
graphic processing units (GPUs) allow very high speed of 
3D rendering, but also can execute parallel, general 
purpose numerical calculations with efficiency higher 
than the CPU. Several years ago NVIDIA®
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presented a parallel computing architecture named 
CUDA™ (Compute Unified Device Architecture). For 

the computer game market CUDA enables creating more 
natural effects of fire, fluid, light et cetera. 
Simultaneously, it has been recognised as a powerful tool 
for solving problems, where parallel computations may be 
utilised, especially for molecular dynamics calculations 
[4], chemistry [5], quantum physics [6] and others. 

The data processing in OCT is especially well suited for 
parallel processing. This is because in-depth information 
is given as a vector of data (a spectrum), independently 
for every point of the surface of an examined object. The 
numbers of such vectors (1,024 to 4,096 numbers length) 
vary from a few thousand for 2D imaging (a single B-
scan) to few hundred thousand for high resolution 3D 
rendering. For every vector the same set of procedures 
must be applied. In the system built in our laboratory they 
are (in order of adoption): background subtraction, λ–k 
spectral remapping, numerical dispersion compensation, 
shaping of the spectrum to Gaussian envelope, calculating 
the logarithm of Fourier transformation amplitude.  

Utilizing a GPU for processing OCT data has already 
been reported [7-9]. However, in none of these reports 
full processing procedure was applied. It must be 
emphasised that it allows imaging, but with some 
compromise with the quality of the final results.  

In our system all steps of data processing are performed 
in a GPU during one flow of data. Furthermore, obtained 
information is not returned from the GPU to the CPU but 
directly displayed on the screen.  

The results presented in this report were obtained with a 
workstation utilising Intel® Core™ i7 920 (2.67 GHz) 
CPU with 6 GB RAM memory and a low cost ($400) 
game designed graphic card: NVIDIA® GeForce® GTX 
285 with 2 GB device memory. To ensure fast acquisition 
of spectra, a National Instruments PCIe-1429 frame 
grabber was employed, which allows transfer of 680 
MB/s over 2 Camera Link cables. As a data source two 
linear cameras were tested: CCD Atmel AViiVA®

To collect data a laboratory-made OCT system was used 
(Fig. 1). As a light source a Superlum D-series 
Broadlighter with a central wavelength of 845nm and full 

 SM2 
capable of supplying 28,000 spectra per second (28 kHz 
line rate) and a very high speed CMOS camera Basler 
Sprint, SPL4096-140km working with the 128 kHz line 
rate in the 2048 pixel mode.  
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spectral width at half maximum (FWHM) of Δλ=107nm 
was employed. The setup had axial and transverse 
resolutions equal to 4μm and 30μm, respectively, and the 
imaging depth of above 2.6mm. 

 

 
 

Fig. 1. OCT setup used in this study: LS – light source,        
OI – optical isolator, FC – fiber coupler, PC – polarization 
controller, NDF – neutral density filter, DC – dispersion 

compensator, RM – reference-arm mirror, X-Y – transversal 
scanner, DG – diffraction grating, SL – spectrograph lens,   

CCD – linear CCD camera 

The software for the presented project was developed 
under Microsoft® Windows™ 7 Professional x64 
operating system and is written in C++ programming 
language. The Microsoft® Visual Studio and Intel® C++ 
Compiler Professional Edition 11.1 with Intel® Integrated 
Performance Primitives library were used to ensure better 
efficiency of data buffering. All procedures for a GPU 
were prepared with NVIDIA® CUDA™ compiler version 
2.3. For visualisation the OpenGL® 3.0 Library was used. 
To simplify some parts of code the Freeglut (an open 
source alternative to the GLUT – OpenGL®

 

 Utility 
Toolkit) library was utilised. 

 
 

Fig. 2. Two main application threads working on the host. 

The acquisition and processing software utilise two 
main threads running on a host computer, schematically 
presented in Fig. 2. The first thread is responsible for the 
acquisition of spectra from the camera. It is running 
synchronically with the OCT instrument and its main task 
is to copy data from the frame grabber to two memory 
buffers, filed alternatively. Data from each buffer 
represents the whole segment to be further parallel 
processed by a GPU. The second thread controls all GPUs 
and runs independently of the acquisition thread. 
Therefore, data is transferred to the GPU thread always 
when needed, e.g. when the processing of the previous set 
has been completed. This way acquisition and processing 
are not synchronised: if data collection is faster than 
processing, some segments will be omitted, in the 
opposite case the same data will be processed twice. 
Since every data segment contains complete information 
of the whole image (2D or 3D) this mode is most useful 
for real time imaging.  

The Graphic Processor Unit utilized in this study has 30 
multiprocessors comprising 8 cores each. Contrary to the 
main processor, GPU cores comprised in a certain 
multiprocessor must execute the same commands 
simultaneously.  Every multiprocessor is equipped with 
its own fast shared memory. This hardware structure is 
used for parallel processing of a specific logical structure 
of treads called the Grid. It is built of Blocks, each 
capable of controlling the execution of 512 threads. It is 
essential that each Block can be executed only in one 
multiprocessor. Therefore, all threads of the Block have 
access to the fast shared memory of this multiprocessor.  

As mentioned before, the elementary amount of data is 
in spectral OCT a single spectrum (a vector) collected 
from the CCD camera (Fig. 1). In the instrument used in 
this study this vector comprises 2048 single precision 
numbers. For effective parallel processing of OCT data it 
is vital that no information exchange is necessary between 
A-scans. Therefore, each A-scan can be processed by a 
different Block and in our case, each thread of this Block 
controls four data points of the A-scan.  The number of 
Blocks is equal to the number of A-scans in the whole 
tomogram and, if necessary, may be very large (e.g. for 
3D imaging). 

Calculations performed by multiprocessors are organis-
ed in the Kernels. This is due to the technique of GPU 
programming: procedures executed within the graphic 
card (the Kernels) are programmed and compiled 
independently from the programming of the host. Then 
they may be called from the main program which results 
in simultaneous launch of the procedure in all treads of 
the GPU.  

The necessity of using the sequence of Kernels results 
from different access to the GPU memory by procedures 
used for data processing (Fig. 3). Since the second step 
(λ-k spectral remapping) needs simultaneous access to all 
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spectrum points, the first Kernel utilises the Shared 
memory. After this, data is transferred to Registers 
memory separately for each thread. This memory 
comprises the fastest read-write registers with only one 
clock cycle latency. Numerical dispersion compensation 
and spectral shaping are performed simultaneously in 
threads, each controlling four data points of the spectrum. 
Then they are returned to the device memory and the 
second Kernel performs the Fourier transformation 
utilising CUFFT library. The obtained A-scan is 
processed in the third Kernel: the absolute value and the 
logarithm (for better visibility of image details) are 
performed. The data ready for displaying is returned to 
the GPU device memory. The last Kernel maps this 
memory to the screen. 
 

 
 

Fig. 3. GPU kernel executions, our kernels use 512 threads per A-
scan. 

As can be seen from Fig. 4, a significant increase of 
data processing speed is achieved when a large number of 
A-scans is parallely processed. For the system used in this 
study this speed stabilizes at about 300,000 A-scans/s for 
data bigger than 24,000 A-scans. This estimation is valid 
unless the size of the whole data to be processed for one 
image  exceeds the GPU device memory capacity. For the 
GPU used in this study this amount is about 110,000 A-
scans (330×330 volume image).   
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Fig. 4. GPU line rate as a function of the number of A-scans. 

For 3D imaging, especially written in OpenGL 
procedures are utilised [10]. This approach takes 
advantage of very fast communication between GPU 
device memory and screen. By dint of this technology, 
fast, real–time imaging is possible.  

 

 
 

Fig. 5. An example of 3D, real time image comprising 100×100 A-
scans. A finger nail with a cuticle is shown. Cage dimensions (W, D, H): 

3.5x3.5x2.7 mm.  

The overall rendering speed of the image plane built of 
1024×1024 pixels is over 100 frames/sec in the case of 2D 
imaging (1024 A-scans build of 1024 pixels each). In the 
case of 3D imaging (Fig. 5) nine perspective pictures per 
second are generated. Every picture comprises 100 planes 
(B-scans) built of 100 A-scans each. As it can be seen from 
the figure this simplified image is sufficient for  real time 
inspection of the object. Contrary to previous reports, the 
results presented in this contribution were obtained after 
full processing, and thus without compromising image 
quality. It is important for on-fly image evaluation in case 
of further recording and post-processing. 
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