
doi: 10.4302/plp.2010.3.14 PHOTONICS LETTERS OF POLAND, VOL. 2 (3), 137-139 (2010)

http://www.photonics.pl/PLP © 2010 Photonics Society of Poland

137

Abstract—In this paper the application of massively parallel
processing of Spectral Optical Coherence Tomography (SOCT) data
with the aid of a low-cost Graphic Processing Unit (GPU) is presented.
The reported system may be used for real-time imaging of high
resolution 2D tomograms or for presenting volume data. The overall
imaging speed is over 100 frames/second for 2D tomograms built of
1024 A-scans and 9 frames/second for 3D volume images containing
100 slices of 100 A-scans. This includes t he acquisition of 2048 pixels
from a CCD camera per A-scan, data transfer to the processor, all
necessary processing and rendering on the screen. As a contribution, the
description of a data flow and parallel processing organization in a GPU
is given.

Optical Coherence Tomography is based on white light
interferometry and is a non-invasive technique of imaging
internal structure of objects. It has been successfully
applied for in-vivo examination of the eye [1-2] and other
objects that weakly absorb and scatter light [3]. A narrow
beam of light of high spatial and low temporal coherence
is directed to the object. The light backscattered and/or
reflected at elements of its internal structure is collected
and brought to the interference with light propagating in
the reference arm of the Michelson interferometer. The
signal is registered in the spectrometer and post-
processed, essentially by taking a Fourier transformation.
This way a single, vertical line (an A-scan) of the
tomogram is recovered. To obtain a cross-sectional image
(a B-scan) the examining beam is scanned over the
surface of the object. By repeating this scanning
procedure line by line with a shift in the direction
perpendicular to the scanning direction, volume data may
be collected.

One of the significant limitations of this technique is the
time of data processing, usually longer than data
acquisition. It limits real time volume imaging to a small
amount of A-scans which decreases picture quality.
Recent progress in massive parallel processing gives an
interesting solution to this problem. Lately developed
graphic processing units (GPUs) allow very high speed of
3D rendering, but also can execute parallel, general
purpose numerical calculations with efficiency higher
than the CPU. Several years ago NVIDIA®

* E-mail: mars@fizyka.umk.pl

 corporation
presented a parallel computing architecture named
CUDA™ (Compute Unified Device Architecture). For

the computer game market CUDA enables creating more
natural effects of fire, fluid, light et cetera.
Simultaneously, it has been recognised as a powerful tool
for solving problems, where parallel computations may be
utilised, especially for molecular dynamics calculations
[4], chemistry [5], quantum physics [6] and others.

The data processing in OCT is especially well suited for
parallel processing. This is because in-depth information
is given as a vector of data (a spectrum), independently
for every point of the surface of an examined object. The
numbers of such vectors (1,024 to 4,096 numbers length)
vary from a few thousand for 2D imaging (a single B-
scan) to few hundred thousand for high resolution 3D
rendering. For every vector the same set of procedures
must be applied. In the system built in our laboratory they
are (in order of adoption): background subtraction, λ–k
spectral remapping, numerical dispersion compensation,
shaping of the spectrum to Gaussian envelope, calculating
the logarithm of Fourier transformation amplitude.

Utilizing a GPU for processing OCT data has already
been reported [7-9]. However, in none of these reports
full processing procedure was applied. It must be
emphasised that it allows imaging, but with some
compromise with the quality of the final results.

In our system all steps of data processing are performed
in a GPU during one flow of data. Furthermore, obtained
information is not returned from the GPU to the CPU but
directly displayed on the screen.

The results presented in this report were obtained with a
workstation utilising Intel® Core™ i7 920 (2.67 GHz)
CPU with 6 GB RAM memory and a low cost ($400)
game designed graphic card: NVIDIA® GeForce® GTX
285 with 2 GB device memory. To ensure fast acquisition
of spectra, a National Instruments PCIe-1429 frame
grabber was employed, which allows transfer of 680
MB/s over 2 Camera Link cables. As a data source two
linear cameras were tested: CCD Atmel AViiVA®

To collect data a laboratory-made OCT system was used
(Fig. 1). As a light source a Superlum D-series
Broadlighter with a central wavelength of 845nm and full

 SM2
capable of supplying 28,000 spectra per second (28 kHz
line rate) and a very high speed CMOS camera Basler
Sprint, SPL4096-140km working with the 128 kHz line
rate in the 2048 pixel mode.

Real-time imaging for Spectral Optical Coherence Tomography
with massively parallel data processing

Marcin Sylwestrzak,*

Institute of Physics, Nicolaus Copernicus University, ul. Grudziądzka 5, PL-87100 Toruń, Poland

 Maciej Szkulmowski, Daniel Szlag, and Piotr Targowski

Received July 09, 2010; accepted September 14, 2010; published September 30, 2010

doi: 10.4302/plp.2010.3.14 PHOTONICS LETTERS OF POLAND, VOL. 2 (3), 137-139 (2010)

http://www.photonics.pl/PLP © 2010 Photonics Society of Poland

138

spectral width at half maximum (FWHM) of Δλ=107nm
was employed. The setup had axial and transverse
resolutions equal to 4μm and 30μm, respectively, and the
imaging depth of above 2.6mm.

Fig. 1. OCT setup used in this study: LS – light source,
OI – optical isolator, FC – fiber coupler, PC – polarization
controller, NDF – neutral density filter, DC – dispersion

compensator, RM – reference-arm mirror, X-Y – transversal
scanner, DG – diffraction grating, SL – spectrograph lens,

CCD – linear CCD camera

The software for the presented project was developed
under Microsoft® Windows™ 7 Professional x64
operating system and is written in C++ programming
language. The Microsoft® Visual Studio and Intel® C++
Compiler Professional Edition 11.1 with Intel® Integrated
Performance Primitives library were used to ensure better
efficiency of data buffering. All procedures for a GPU
were prepared with NVIDIA® CUDA™ compiler version
2.3. For visualisation the OpenGL® 3.0 Library was used.
To simplify some parts of code the Freeglut (an open
source alternative to the GLUT – OpenGL®

 Utility
Toolkit) library was utilised.

Fig. 2. Two main application threads working on the host.

The acquisition and processing software utilise two
main threads running on a host computer, schematically
presented in Fig. 2. The first thread is responsible for the
acquisition of spectra from the camera. It is running
synchronically with the OCT instrument and its main task
is to copy data from the frame grabber to two memory
buffers, filed alternatively. Data from each buffer
represents the whole segment to be further parallel
processed by a GPU. The second thread controls all GPUs
and runs independently of the acquisition thread.
Therefore, data is transferred to the GPU thread always
when needed, e.g. when the processing of the previous set
has been completed. This way acquisition and processing
are not synchronised: if data collection is faster than
processing, some segments will be omitted, in the
opposite case the same data will be processed twice.
Since every data segment contains complete information
of the whole image (2D or 3D) this mode is most useful
for real time imaging.

The Graphic Processor Unit utilized in this study has 30
multiprocessors comprising 8 cores each. Contrary to the
main processor, GPU cores comprised in a certain
multiprocessor must execute the same commands
simultaneously. Every multiprocessor is equipped with
its own fast shared memory. This hardware structure is
used for parallel processing of a specific logical structure
of treads called the Grid. It is built of Blocks, each
capable of controlling the execution of 512 threads. It is
essential that each Block can be executed only in one
multiprocessor. Therefore, all threads of the Block have
access to the fast shared memory of this multiprocessor.

As mentioned before, the elementary amount of data is
in spectral OCT a single spectrum (a vector) collected
from the CCD camera (Fig. 1). In the instrument used in
this study this vector comprises 2048 single precision
numbers. For effective parallel processing of OCT data it
is vital that no information exchange is necessary between
A-scans. Therefore, each A-scan can be processed by a
different Block and in our case, each thread of this Block
controls four data points of the A-scan. The number of
Blocks is equal to the number of A-scans in the whole
tomogram and, if necessary, may be very large (e.g. for
3D imaging).

Calculations performed by multiprocessors are organis-
ed in the Kernels. This is due to the technique of GPU
programming: procedures executed within the graphic
card (the Kernels) are programmed and compiled
independently from the programming of the host. Then
they may be called from the main program which results
in simultaneous launch of the procedure in all treads of
the GPU.

The necessity of using the sequence of Kernels results
from different access to the GPU memory by procedures
used for data processing (Fig. 3). Since the second step
(λ-k spectral remapping) needs simultaneous access to all

doi: 10.4302/plp.2010.3.14 PHOTONICS LETTERS OF POLAND, VOL. 2 (3), 137-139 (2010)

http://www.photonics.pl/PLP © 2010 Photonics Society of Poland

139

spectrum points, the first Kernel utilises the Shared
memory. After this, data is transferred to Registers
memory separately for each thread. This memory
comprises the fastest read-write registers with only one
clock cycle latency. Numerical dispersion compensation
and spectral shaping are performed simultaneously in
threads, each controlling four data points of the spectrum.
Then they are returned to the device memory and the
second Kernel performs the Fourier transformation
utilising CUFFT library. The obtained A-scan is
processed in the third Kernel: the absolute value and the
logarithm (for better visibility of image details) are
performed. The data ready for displaying is returned to
the GPU device memory. The last Kernel maps this
memory to the screen.

Fig. 3. GPU kernel executions, our kernels use 512 threads per A-
scan.

As can be seen from Fig. 4, a significant increase of
data processing speed is achieved when a large number of
A-scans is parallely processed. For the system used in this
study this speed stabilizes at about 300,000 A-scans/s for
data bigger than 24,000 A-scans. This estimation is valid
unless the size of the whole data to be processed for one
image exceeds the GPU device memory capacity. For the
GPU used in this study this amount is about 110,000 A-
scans (330×330 volume image).

Number of A-scans in the image

500 1000 2000 5000 10000 20000 50000

G
PU

 lin
e

ra
te

 [l
in

es
 p

er
 s

ec
on

d]

150

200

250

300

Fig. 4. GPU line rate as a function of the number of A-scans.

For 3D imaging, especially written in OpenGL
procedures are utilised [10]. This approach takes
advantage of very fast communication between GPU
device memory and screen. By dint of this technology,
fast, real–time imaging is possible.

Fig. 5. An example of 3D, real time image comprising 100×100 A-
scans. A finger nail with a cuticle is shown. Cage dimensions (W, D, H):

3.5x3.5x2.7 mm.

The overall rendering speed of the image plane built of
1024×1024 pixels is over 100 frames/sec in the case of 2D
imaging (1024 A-scans build of 1024 pixels each). In the
case of 3D imaging (Fig. 5) nine perspective pictures per
second are generated. Every picture comprises 100 planes
(B-scans) built of 100 A-scans each. As it can be seen from
the figure this simplified image is sufficient for real time
inspection of the object. Contrary to previous reports, the
results presented in this contribution were obtained after
full processing, and thus without compromising image
quality. It is important for on-fly image evaluation in case
of further recording and post-processing.

This project is funded by Polish Government Research
Grant through years 2008–2011 and 7th

 FP CHARISMA
project. M.Syl. and D.Sz. acknowledge support from the
"Step into the Future III" program co-financed by the
European Social Fund and Polish Government. M. Sz. is
supported by the Foundation for Polish Science (scholarship
START 2010).

References
[1] M. Wojtkowski et al., Am. J. Ophthalmol. 138, 412 (2004).
[2] M. Wojtkowski et al., Ophthalmology 112, 1734 (2005).
[3] D. Stifter, Applied Physics B Lasers and Optics 88, 337 (2007).
[4] J.E. Stone et al., Journal of Computational Chemistry 28, 2618 (2007).
[5] I.S. Ufimtsev, T.J. Martinez, J. Chem. Theory Comput. 4, 222 (2008).
[6] E. Gutierrez et al., Computational Science 5101, 700 (2008).
[7] J. Probst, P. Koch, G. Hüttmann, Proc. SPIE 7372, 7372_0Q, (2009).
[8] S. Van der Jeught et al., JBO Letters 15, 30511 (2010).
[9] K. Zhang, J.U. Kang, Opt. Exp. 18, 11772 (2010),

http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-11-11772
[10] M. Sylwestrzak et al., Proc. SPIE 7391, 73910A (2009),

http://www.fizyka.umk.pl/~ptarg/abstrakty/Application of GOP
Sylwestrzak.pdf

http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-11-11772�
http://www.fizyka.umk.pl/~ptarg/abstrakty/Application%20of%20GOP%20Sylwestrzak.pdf�
http://www.fizyka.umk.pl/~ptarg/abstrakty/Application%20of%20GOP%20Sylwestrzak.pdf�

