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Abstract—We use an orthonormal expansion for relating the optical 
transfer function with the expectation values, as defined in quantum 
physics. A certain set of orthonormal functions is useful for writing the 
output irradiance distribution as a quasi Gabor expansion of the input 
irradiance distribution. The coefficients of this later expansion are cross 
correlations measurements of similarity. We show that the expectation 
values are related to the cross correlations coefficients by a discrete 
Fourier transform.  
 
 
1. Introduction 

For mobile telephony and for imaging in computer 
assisted activities, it is desirable to gather pictures, using 
low price devices, with nonconventional optical elements 
and detectors interconnected to digital image processors. 

 
Due to this interconnectivity, new optical devices have 

been proposed for extending the depth of field, while 
preserving the full pupil aperture [1]-[10]. These new 
devices are able to generate modulation transfers 
functions (MTFs) with the following two features. The 
MTFs have a low sensitivity to focus errors. And the 
MTFs do not have zero values inside their passband. 
Hence, simple digital algorithms can be applied to restore 
digitally any visibility loss in the MTF.   
 

Here we explore some analytical tools for gaining 
physical insight when designing these new optical 
elements.  

 
In section 2, we explore the use of orthonormal 

expansions for relating the OTF with the expectation 
values, as defined in quantum physics [11].  Then, in 
section 3, we identify a suitable set of orthonormal 
functions that relate the output irradiance distribution as a 
quasi Gabor expansion of the input irradiance distribution 
[12]. We indicate that the coefficients of the quasi Gabor 
expansion are similarity cross correlation coefficients 
[13]. In section 4, we show that the cross correlation 
coefficients are related to the expectation values by a 
discrete Fourier transform. For the sake of clarity our 
discussion is 1-D; and we assume that the imaging 
process has a unit magnification. 
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2. Orthonormal expansions 

The input irradiance distribution is suitably represented 
as the following expansion 
 

 ).()(0 xaxI ss
s

φ∑
∞

−∞=

=  (1) 

 
In Eq. (1) the lower case Greek letter phi denotes the s-th 
component of a suitable set of orthonormal function, as 
common in mathematical physics. See Appendix A. The 
Fourier transform of Eq. (1), here denoted as the Fourier 
spectrum of the input, is 
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The function phi (in upper case Greek letter) denotes the 
Fourier transform of the function phi in lower case 
characters. Next, we express the Fourier spectrum of the 
output as 
 

).();(

)();();(
~

0

~

µµ

µµµ

ss
s

WHa

IWHWI

Φ=

=

∑
∞

−∞=

        (3) 

 
In Eq. (3) we denote as );( WH µ  the optical transfer 
function (OTF) of the optical system. In a symbolic 
fashion, the Roman letter W represents the influence of 
the wave aberrations on the OTF. Of course, the MTF is 
the modulus of the OTF. As is indicated in Appendix A, 
the functions )(µsΦ also form an orthonormal set. 
 

Now, we propose to express )();( µµ sWH Φ  in terms 
of the initial set of orthonormal function. That is,  
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we note that, as it is common when using an orthonormal 
base, the new coefficients are obtained by evaluating  
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We recognize that the new coefficients are obtained by 
performing a mathematical operation that is similar to the 
expectation value, as used in quantum physics: 
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 Now, by substituting Eq. (4) in Eq. (3), we have that 
the Fourier spectrum of the output is  
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Finally, for obtaining the irradiance distribution at the 
output, we take the inverse Fourier transform of Eq. (6). 
That is, 
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We note that the expression in Eq. (7) describes the 
output irradiance distribution using the same set of 
orthonormal functions that are used for representing the 
input irradiance distribution. Of course, our result is valid 
for any set of orthonormal functions. However, as we 
discuss next, one set of orthonormal functions is 
particularly useful. 
  
3. Quasi Gabor expansion 

For testing the performance of an optical system, 
working under noncoherent illumination, it is common to 
use as input a periodic test pattern. Hence, as 
schematically shown in Fig. 1, we assume that at the input 
plane the irradiance distribution is a binary grating, with 
period d, and with duty cycle (or fill factor) equal to d/N, 
where N is any natural number. This input binary pattern 
can be represented by the Fourier series  
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Next, by taking advantage of the binary nature of the 
input, we define the following set of N orthonormal 
functions 
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By construction, we know that  
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In Eq. (10) we use the symbol nm.δ  for representing a 
Kronecker delta, of any two natural numbers m and n 
such that m and n are smaller than N. 
 
 

                
Fig. 1. Binary grating with period d, and with duty cycle d/N.  

 
Now, for testing the performance of the optical system, 
we consider the input irradiance distribution to be 

0 0( ) ( )I x x= ϕ . 
Next, we suggest expressing the output irradiance 
distribution as the following quasi Gabor expansion 
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The coefficients )(Wnσ  are obtained by evaluating the 
cross correlation  
 

      .)();/()/()(
2/

2/

dxxIWNpdxIdNW o

d

d
p += ∫

−

σ        (12) 

 
The mathematical expression in Eq. (12) is similar to the 
definition of Fresnel similarity in Ref. [13], if W stands 
for a focus error. Hence, one can consider that the cross 
coefficients measure the resemblance between the input 
irradiance distribution and the output irradiance 
distribution, if the optical system suffers from aberrations.  
In what follows, we relate the expectation values with the 
cross correlation coefficients. 
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4. Discrete Fourier transformation 

If we substitute Eq. (8) in Eq. (11), we have that the 
output irradiance distribution can be written as  
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We recognize that Eq. (13) is a possible representation of 
Eq. (7) when the orthonormal set is 
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and  
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Hence, from a simple comparison of Eqs (7) and (13), we 
conclude that  
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Or equivalently, 
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Therefore, when wave aberrations are present, the 
expectation values of the OTF can be understood as the 
Fourier spectrum of the cross correlation coefficients, 
which measure the similarity between the input and the 
output. Thus, the cross correlation coefficients can be 
used as image quality criteria for evaluating the impact of 
wave aberrations on the OTF.  
 
Concluding remarks 

We have shown that by using an orthonormal set of 
functions, one can link the mathematical methods for 
evaluating the expectation values in quantum physics, 
with the analysis of the impact of wave aberrations on the 
OTF. We have identified one set of orthonormal 
functions that helps to express the output irradiance 
distribution as a quasi Gabor expansion of the input 
irradiance distribution. The coefficients of this latter 
expansion are cross correlation values that measure the 
similarity between the input and the output. Furthermore, 
we have shown that the expectation values of the OTF 
and the cross correlation coefficients are related to each 
other by a discrete Fourier transform. Therefore, the cross 

correlation coefficients may be useful as image quality 
criteria, when wave aberrations are present.  
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Appendix A 

It is not so well known that if one has a set of functions, 
)(xmφ , then their Fourier transform, )(µmΦ  , also form a 

orthonormal set, as we show next. By definition 
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Then,  
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(A2) 
 
Along the mathematical development of equation (A2), 
we identify and use the Dirac delta δ(x−y), for proving 
that both )(xmφ  and )(µmΦ  form a set of orthonormal 
functions. 
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