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Abstract—We present a complex amplitude transmittance filter that 
reduces the impact of focus errors on the modulation transfer function 
(MTF). The new filter combines the use of a cubic phase mask and a 
Gaussian apodizer, which reduces the oscillations in the MTF. We 
propose the use of a tendency curve, of several MTFs, for evaluating the 
departures of the tendency MTF, as a Euclidian distance in hyperspace.  
 

 
1. Introduction 

Certain nonconventional phase masks, as well as some 
amplitude apodizers, can reduce the influence of a focus 
error on the Modulation Transfer Function (MTF) [1]-
[11].  

 
Here we present an optical element that uses both 

amplitude variations and phase variations, for generating 
a MTF with a low sensitivity to focus errors. The new 
filter generates a MTF that varies slowly with the focus 
error and has reduced oscillations, as compared with 
previously proposed filters for extending the depth of 
field. 

 
In section 2, we show that by combining the use of a 

mask with a Gaussian apodizer, it is possible to preserve 
resolution, while reducing the influence of a focus error 
on the MTF. Furthermore, the Gaussian apodizer reduces 
the oscillations of the MTF, as compared with previous 
proposals for extending the depth of field. In section 3, 
we analyze the decrement in light throughput. In section 
4, we propose the use of a tendency curve, of several 
MTFs, for evaluating the departures of the tendency 
MTF, as a Euclidian distance in hyperspace. For the sake 
of clarity our discussion is 1-D; and we assume that the 
imaging process has a unit magnification. 

 
2. Ambiguity function and MTF 

The ambiguity function is a useful mathematical tool for 
visualizing the impact of a focus error on the MTF [12]-
[15]. The central relationship is the following. We denote 
the generalized pupil function as 
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In Eq. (1) the Greek letter μ represents the spatial 
frequency; and Ω denotes the cut-off spatial frequency of 
the pupil aperture. The function Q(μ) describes the 
complex amplitude transmittance of the pupil aperture. 
We use W as a shorthand notation for representing the 1D 
version of the Hopkins focus error coefficient, W2,0, in 
the units of wavelength λ. That is, W = (W2,0
 

/λ). 

 The optical transfer function, H(μ;W), is a normalized 
version, (1/N), of the auto-correlation of P(μ;W) 
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The MTF is the modulus of equation (2). The ambiguity 
function of the complex amplitude transmittance Q(μ) is 
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Consequently, it is convenient to recognize that the 
ambiguity function, as a 2-D function, contains all the 
out-of-focus MTFs  
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Equation (3) is useful for relating the results of optical 
imaging devices with a wavefront design in radar 
engineering. Moreover, for short time pulses, Eq. (3) 
helps to visualize the intensity-spectrum evolution 
through propagation in a first-order dispersive medium. 
And hence, the ambiguity function helps to design 
temporal filters that use the degree of temporal coherence 
of the optical source [16]. 
 
For the cubic phase mask, in Ref. [2], the complex 
amplitude transmittance of the pupil aperture is 
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In Eq. (4) the letter "a" represents the maximum value of 
the optical path difference, in units of λ, which is 
introduced by the phase mask. By substituting Eq. (4) in 
Eq. (2), we obtain  the modulus of the ambiguity function  
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We note that at each value of μ, the integral in Eq. (5) can 
be expressed in terms of a Fresnel integrals, as was first 
recognized in radar engineering [17], and later on in 
optics [18]-[19].  
 

 
Fig. 1. Typical MTF for the cubic phase mask  

In Fig. 1 we show a typical MTF for the cubic phase 
mask, if the maximum optical path difference is a=33. 
The coefficient of a focus error is W=0 for the curve in a 
red colour, and W=3 for the curve in a blue colour. It is 
apparent from Fig. (1) that the MTF does not exhibit zero 
values in its passband. However, the MTF curve shows 
oscillations around its tendency line.  
 

Here, for reducing the oscillations around the tendency 
line, we propose the use of  a weak Gaussian filter. 
Taking into account the presence of the Gaussian 
apodizer, the new complex amplitude transmittance of the 
pupil aperture is 
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Of course, by changing the attenuation factor "c", one can 
change the half-width of the Gaussian apodizer. In Figure 
(2) we show a typical MTF if a=33, c=0.7, W=0 for the 
red colour curve, and W=3 for the blue colour curve. 
 

 
Fig. 2. MTFs for the complex amplitude mask  

It is apparent from Fig. 2 that the new MTF preserves  
low sensitivity to focus errors. But in addition, the new 
MTF has reduced oscillations around its tendency line. 
Admittedly, the above results are obtained by sacrificing 
light throughput, as we discuss next.  
 
3. Light throughput  

When extending the depth of field there are two main 
challenges. First, if one wishes to preserve lateral 
resolution (associated with a full pupil aperture), one 
avoids the trivial solution of closing down the pupil. 
Second, if one wishes to preserve light gathering power, 
then one must use phase-only masks. Here, we use a 
Gaussian apodizer. Then, we preserve lateral resolution. 
However, we decrease light that is represented by the 
integral 
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 As discussed in section 4, we need to consider 
attenuation factors c≈ 0.25. Then, for implementing our 
proposed complex amplitude filter, light throughput is 
decreased from unity to 0.49. In other words, the f-
number is increased by one step. 
 
4. Tendency curve and Euclidian distance 

Now, we consider a family set of MTFs. Each member 
of the family is a MTF with a variable focus error W. For 
instance, we can have a family, of say, 7 MTFs with 
W=0, 0.5, 1, 1.5, 2, 2.5, 3.  
 

Next, we recognize that we have a large collection of 
points that are specified by two coordinates: spatial 
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frequency, and an MTF value. The collection of points 
can be thought of as experimental data of a tendency 
curve. Then, by employing a linear regression technique, 
one can find a tendency MTF.  
 

The tendency MTF has two useful properties. First, we 
can use the tendency MTF for evaluating the inverse filter 
of the family set of MTFs. Second, any departure of a real 
MTF from the tendency MTF can be associated with an 
error. The sum of the squared errors is a Euclidian 
distances in hyperspace.  

 
This Euclidian distance is hyper hypotenuse, which 

evaluates the departures of a family set of MTFs from the 
tendency MTF. In other words, the hyper hypotenuse 
evaluates in a quantitative fashion the statement feature of 
low sensitivity to a focus error. And consequently, the 
hyper hypotenuse is useful for assessing the quality of a 
mask that generates MTFs with low sensitivity to a focus 
error.  

 
In Fig. 3 we display the hyper hypotenuse (vertical axis) 

of the proposed complex amplitude mask, as a function 
the optical path difference "a" in Eq. (4), and the 
attenuation factor "c" in Eq. (6). 

 
 

 
 
 

Fig. 3. Hyper hypotenuse of the proposed mask 

It is apparent from Fig. 3 that our proposed filter can have 
low hyper hypotenuse values, if a≥10 and c≈0.25. In other 
word, one can use a rather thin version of the phase cubic 
mask (which is in agreement with the results in Ref. [8]), 
and a weak Gaussian apodizer. And in this manner, for 
reducing the oscillations of the MTF one does not have to 
reduce substantially light throughput.  
 
 

In conclusions, we have presented a complex amplitude 
transmittance filter that combines the use of a cubic phase 
mask and a Gaussian apodizer. This complex amplitude 
mask reduces the impact of a focus error, as well as the 
oscillations of the MTF curve.  

We have proposed to use several MTFs, with a variable 
focus error, for generating a family set. By using linear 
regression techniques, this family set can be used to 
identify a tendency MTF.  

The tendency MTF is useful for identifying an inverse 
filter for the whole family set of MTFs. Furthermore, any 
departure of a real MTF from the tendency MTF can be 
related to a Euclidian hyper hypotenuse, for assessing low 
sensitivity to a focus error.  

From our numerical simulations, we conclude that the 
hyper hypotenuse reaches a minimum steady state value, 
if the parameters of the complex filter are set to the 
following values a≥10 and c≈0.25.   
 
 
 

We are indebted to Erick Ayala for performing initial 
numerical verifications. We gratefully acknowledge the 
financial support of PROMEP, SNI and the University of 
Guanajuato.  

 
 
 

References 
 

[1] J. Ojeda-Castañeda, R. Ramos, A. Noyola-Isgleas, Appl. Opt. 27, 2583 
(1988).  

[2] E.R. Dowski, Jr., W.T. Cathey, Appl. Opt. 34, 1859 (1995).  
[3] W. Chi, N. George, Opt. Lett. 26, 875 (2001). 
[4] A. Sauceda, J. Ojeda-Castañeda, Opt. Lett. 29,560 (2004). 
[5] S. Mezouari, G. Muyo, A.R. Harvey, Proc. SPIE 5249, 

238 (2004). 
[6] A. Castro, J. Ojeda-Castañeda, Appl. Opt. 43, 3474 (2004). 
[7] J. Ares García, S. Bará, M. Gomez García, Z. Jaroszewicz, 

A. Kolodziejczyk, K. Petelczyc,  Opt. Exp. 16, 18371 (2008). 
[8] Y. Takahashi, S. Komatsu, Opt. Lett. 33, 1515 (2008). 
[9] J. Ojeda-Castañeda, J.E.A. Landgrave, C.M. Gómez-Sarabia, Appl. 

Opt., 47, E99 (2008). 
[10] P. Mouroulis, Opt. Exp. 16, 12995 (2008). 
[11] G. Muyo, A. Singh, M. Andersson, D. Huckridge, A. Wood, 

A.R. Harvey, Opt. Exp. 17(23), 21118 (2009). 
[12] K.-H. Brenner, A.W. Lohmann, Opt. Comm. 77, 89 (1982). 
[13] H. Bartelt, J. Ojeda-Castañeda and E.E. Sicre, Appl. Opt. 23, 2693 

(1984). 
[14] J. Ojeda-Castañeda, L.R. Berriel-Valdos Ramos, E. Montes, Appl. Opt. 

27, 790 (1988).  
[15] M.E. Testorf, B. Hennelly, J. Ojeda-Castañeda, Phase-Space Optics  

(New York, McGrawHill, 2010). 
[16] J. Ojeda-Castañeda, J. Lancis, C.M. Gómez-Sarabia, V. Torres-

Company, Pedro Andrés, J. Opt. Soc. Am. A, 24, 2268 (2007). 
[17] C.E. Cook, M. Bernfeld, Radar signals: an introduction to theory 

and applications (Artech House Inc., Norwood, 1993), p. 120. 
[18] G. Muyo, A.R. Harvey, Opt. Lett. 30, 2715 (2005).  
[19] M. Somayaji, M.P. Christensen, Appl. Opt. 45, 2911 (2006). 
 

0 5 10 15 20 25 30 35 40 45 50

2

4

6

8

10

0

2

4

6

8

10

Factor "c"

p        y  p   

Factor "a"

H
ip

ot
en

us
a 

"d
"


