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Abstract—We define a temporal similarity function for assessing the 
temporal evolution of short pulses in dispersion media. For first-order 
dispersion media the temporal similarity function has a simple close 
expression. We use the sampled values of the temporal similarity 
function as coefficients, for expressing the output complex amplitude 
envelope as a finite linear superposition of the input complex amplitude 
envelope. 
 

 
For analyzing the propagation of modes in optical 

fibres, it is convenient to compare the near field 
diffraction patterns against the far field diffraction 
pattern. One can do a quantitative comparison of 
similarity, by performing a spatial cross-correlation 
between near field diffraction patterns and the far field 
diffraction pattern [1]. For a quantitative comparison 
between an initial complex amplitude distribution and its 
Fresnel diffraction pattern, Lohmann and Ojeda-
Castañeda used a cross-correlation between an initial 
complex amplitude distribution and its Fresnel diffraction 
pattern [2]. This latter cross-correlation is useful for 
setting array illuminators [3, 5].  
 

Our aim here is to define and to explore the use of a 
temporal similarity function, which is a temporal cross-
correlation between the input complex amplitude 
envelope and the output complex amplitude envelope, of 
the same dispersive medium. If the input is represented by 
a Dirac comb, then at discrete values the temporal 
similarity function has simple mathematical expressions. 
We show that by using the sampled values of the 
temporal similarity function, as coefficients, one can 
express the output complex amplitude envelope as a finite 
linear superposition of the input complex amplitude 
envelope.  
 
Temporal similarity 
If one neglects nonlinear effects, inside a dispersive 
medium, one can express the evolution of the slowly 
varying complex envelope as follows: 
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In Eq. (1) τ is the time measured in the proper reference 
frame of the pulse; we denote as U(ω) the Fourier 
spectrum of the input complex amplitude envelope; and 
H(ω; z; βm) represents the transfer function at a distance 
z, inside the dispersive medium. In a symbolic fashion, 
the letter βm indicates a dispersion coefficient, in the 
Taylor series expansion of the dispersion relation around 
ω0. Trivially, if z=0 then H(ω; 0; βm)=1, Eq. (1) reduces 
to a Fourier transform, which relates the input complex 
amplitude envelope with its Fourier spectrum. For a first-
order dispersion medium, with dispersion coefficient β2

 

, 
Eq. (1) becomes 
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And in a similar fashion, for a second-order dispersion 
medium, with dispersion coefficient β3
  

, Eq. (1) becomes 
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Next, we use the proposal in Ref. [2] for defining the 
following temporal, cross-correlation function 
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If one substitutes Eq. (1), at z≠0 and at z=0 in Eq. (4), we 
obtain the following result 
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If the input complex envelope is periodic, then 
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And hence, by substituting Eq. (6) in Eq. (5), we obtain 
that for periodic short pulses the temporal similarity 
function is 
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It is apparent from Eq. (7) that the temporal similarity 
function is periodic in time. Next, we recognize that the 
temporal similarity function can also be a periodic 
function along the z-axis. For a first-order dispersion 
medium, Eq. (7) becomes 
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And for a second-order dispersion medium, Eq. (7) takes 
the form 
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In both cases the period along the z-axis, ZT, is the Talbot 
length in the respective dispersion medium. That is, for a 
first-order dispersion medium, with β2
 

>0, 
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And for a second-order dispersion medium, with β3
 

>0, 
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Next, we illustrate our proposal with simple applications.  

Fractional Talbot effect 
For gaining a physical insight into the above definition 
and its mathematical expressions, we assume that at the 
input we have a Dirac comb. For this extreme case, the 
properties of the temporal similarity function are closely 
related to the complex amplitude envelope itself. In next 
section, we clarify the importance of evaluating temporal 
similarity function at discrete values of t = (n/N) T. If the 
input is Dirac comb, then Eq. (7) becomes 
 

).exp();;();( tiqzqHztS m
q

ΩΩ= ∑
∞

−∞=

β       (11) 

 
And if t=(n/N) T, then Eq. (11) can be written as a 
discrete Fourier transform: 
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Hence, the discrete version of the temporal similarity 
function can be thought of as a discrete impulse response 
[6]. Next, we note that at a distance z=ZT

 

/N, for a first-
order dispersion medium, the discrete version of Eq. (8) 
becomes 
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And for the second-order dispersion medium, the discrete 
version of Eq. (9) becomes 
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For describing Fresnel diffraction, Guigay [7] reported a 
closed formula for evaluating equation (13): 
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As far as we know, there is no analytical formula for 
evaluating Eq. (14). In Table 1 we display the values of 
the square modulus of Eq. (15). That is,  
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N If    n = 2q If    n = 2q + 1 

2, 6, 10, … 0 (2/N) 

4, 8, 12, … (2/N) 0 

3, 5, 7,  … (1/N) (1/N) 

Table 1. Square modulus of the temporal similarity function. 

Along column one, in Table 1, we list three family sets of 
values of N. Along column two, we specify the values of 
|S(nT/N; ZT)|2 if the index n is an integer, even number; 
while along column three, the index n is an integer, odd 
number. It is apparent from Table 1 that if N is an odd 
integer number, then |S(nT/N; ZT)|2 has a fixed value for 
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any n = 0, … (N-1). This result is agreement to the fact 
that the output complex amplitude envelope exhibits (N-
1) interlaced spikes, between two consecutive deltas of 
the initial Dirac comb. Hence, at z=ZT

 

/N, the repetition 
rate increases by a factor N. However, an increment in the 
repetion rate is associated to a power spectrum reduction 
by a factor (1/N). The result in Eq. (16) suggests the use 
of phase-only modulation, over the initial Dirac comb, for 
setting temporal Talbot array illuminators [6]. 

Quasi-Gabor expansion 
Here we clarify the relevance of sampling the temporal 
similarity function. To that end, we use a Dirac comb for 
defining a family set of N periodic functions, with period 
T. The n-th member of the family set is 
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In equation (17) N is an arbitrary positive integer number; 
and n = 0, 1 … (N-1); and )/()( 0 NnTn −= τφτφ . It is 
straightforward to show that the members (of this family 
of functions) form an orthonormal set. That is, 
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In heuristic terms, if one keeps in mind Simpson’s rule 
for integration, then one can assume that for large values 
of N, the above family set is a complete set. Hence, we 
propose to use the following expansion  
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In Eq. (19) we denote the influence of the dispersion 
coefficient by using the letter βm, as a parameter. The 
finite linear superposition, in Eq. (19), can be considered 
as a quasi Gabor expansion [8]. The coefficients Cn(z; 
βm
 

) are obtained by evaluating the integral  
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If the input complex amplitude envelope is ),()0,( 0 τφτ =u   
then the temporal similarity function in Eq. (4) is  
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By comparison of Eq. (20) and (21) we claim the 
following. If at the input the complex amplitude envelope 
is a Dirac comb, then at a discrete set of values, t=(n/N)T, 
the temporal similarity function is the coefficient of a 
quasi Gabor expansion. In other words, the impulse 
response in Eq. (8) and (21) is 
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The result in Eq. (22) offers a useful interpretation to a 
quasi-Gabor expansion. The coefficients are 
measurements of similarity between the input complex 
amplitude envelope and the output complex amplitude 
envelope, at the same dispersive medium. 

 
We have defined a temporal similarity function, as a 

temporal cross-correlation between the input complex 
amplitude envelope, and the output complex amplitude 
envelope, of the same dispersive medium. For periodic 
short pulses the temporal similarity function has simple 
expressions, which shows that the temporal similarity 
function is periodic both in time, and along the z-axis. 
The period along the z-axis, ZT

For a first-order dispersion medium, the discrete version 
of the temporal similarity function follows the close 
expression reported by Guigay. We have shown that by 
using the sampled values of the temporal similarity 
function, as coefficients, one can express the output 
complex amplitude envelope as a finite linear 
superposition of the input complex amplitude envelope. 
The coefficients measure the similarity between the input 
complex amplitude envelope and the output complex 
amplitude envelope.  

, is the Talbot length in 
the respective dispersion medium.  

 
 
 

We are indebted to Adolf W. Lohmann, Pedro Andres, 
Jesus Lancis and Omel Mendoza-Yero for useful 
discussions on this topic.  
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