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Abstract—In the paper the propagation is considered of (3+1)D 

axially-symmetric spatio-temporal pulses through cubic-quintic 

nonlinear Kerr-like with linear graded-index modulation. The analysis 

of propagation is performed by means of the variational method. The 

approximate solutions of Euler-Lagrange (EL) equations are obtained 

using multiple scale approximation up to second-order correction terms. 

The results are compared with a numeric solution of the nonlinear 

Schrödinger equation. 
 

 

Let us consider an axially-symmetric (3+1)D light bullet 

propagating in a nonlinear cubic-quintic medium with 

axially-symmetric graded-index modulation of the linear 

index. Its envelope U(x,y,z,t) = U(r,z,t) satisfies the 

nonlinear Schrödinger equation (NLSE):  
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(the index after the function denotes differentiation over 

the indicated coordinate and  modulation coefficient). 

The cubic-quintic permittivity equals:  

  2 4

2 | | | | / .NL satU U I    (2) 

Assume the field of the bullet as the product of the 

spatial R(r,z) and the temporal u(z,t) terms:  

      , , , , .U r z t R r z u z t  (3) 

Because the nonlinearity NL couples R and u, the field (3) 

does not satisfy NLSE (1). Nevertheless, we can treat it as 

an approximate solution in which R satisfies the linear 

transverse part of Eq. (1) and describes Gaussian beam 

propagating in  media with permittivity modulated by the 

last term of NLSE while u satisfies the nonlinear part of 

Eq. (1) and describes a temporal soliton. Note that the 

parameters of this soliton are defined by the effective 

nonlinearity coefficient 2(eff) = 2|R|
2
(eff) and the effective 

saturation  Isat(eff) = Isat/|R|
2
(eff)  depending on a constant 

value of |R|
2
 = |R|

2
(eff) enabling decomposition of NLSE 

[1]. 

Assume that the temporal and spatial width together 

with the bullet’s peak the field change during propagation. 

To describe these changes we shall apply the variational 

method [2-7]. NLSE (1) corresponds to Lagrange density 

[2-4]:  

 
* E-mail: jasinski@if.pw.edu.pl 

 

 * * * * 2 2

2

4 6

2

2 2 2 2

| | | |

2 3

z z t t r r
D

sat

i UU U U k U U U U k r
L

k

U U

I


 
   

 
  

 

 (4) 

As the trial function describing field U = U(r,z,t) we take:  
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with the evolving peak field b(z) temporal and spatial 

widths w(z) and a(z), propagating term (z), Gaussian 

curvature (z) and chirp (z). The Lagrange function L is 

obtained by the integration of LD with U given by (5) over 

time. Doing so we arrive at [2-4]:  
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Treating six evolving functions (z) in U as generalized 

coordinates we can write six Euler-Lagrange equations: 

( / ) / / 0zd L dz L      . In order to simplify 

further calculations let us apply dimensionless quantities 

defined as follows:  
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Moreover, to specify the type of the media let us 

consider positive nonlinearity 2>0 and negative group 

velocity dispersion k2<0. One of the obtained EL equation 

can be integrating immediately giving:  

 2 22B A W P  (8) 

The constant P that appears here we can identify as a 

quantity proportional to total power carried by the bullet:  
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Two another EL equations describe the evolution of the 

spatial and the temporal width. Although they contain the 

Gaussian curvature and the chirp, we can eliminate them 

using the remaining EL equations. Doing so we obtain:  
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(the index containing a letter means differentiation over 

appropriate quantity) where functions appeared in the 

right-hand expressions of Eq. (8) are given by the 

expressions:  
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The equations (10) describe a more generalized case of 

the cubic-quintic medium than that discussed in [4].They 

have no general analytic solution, but we can report two 

special solutions: (i) oscillating Gaussian beam of initial 

width A(0) obtained for W:  

 2 2 2 2( ) (0) cos sin / (0) ,A Z A Z Z A   (12) 

and (ii) stationary solution A =const = A0, W =const = W0. 

Although the expressions for A0 and W0 given as functions 

of power P are very complicated, we can write them by 

explicit formulae as the functions of width W0. Together 

with B0(W0) following from Eq. (8) they give:  
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To describe a small deviation from stationary solutions 

we shall apply a multiple scale technique [8]. Let us write: 
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where | | << | | << || for  = A and  = W. 

Introducing (14) into (10)-(11) and expanding F and W 

into Taylor series we obtain two highest order equations 

F(A0,W0)=0, G(A0,W0)=0 determining a stationary solution 

(13). The first and the second order equations give:  
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  (16) 

The equations (15) describe small oscillations around 

the stationary solutions. Looking for a solution of the form  

(Z) = (0)exp(iZ), we obtain: 
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The condition for vanishing of the determinant of the 

system (17) gives to possible values of  - two normal 

frequencies:  
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Therefore the first-order corrections in the expansion (14) 

describe superposition of oscillations with frequency 1 

and 2. Fig. (1) illustrate such oscillations – it contains the 

numeric solution of Eq. (1) obtained by BPM method. 

 

Fig. 1. Evolution of peak field in CQ medium – complex superposition 

of oscillations. 

In Fig. 1 we can distinguish oscillations with a certain 

fundamental frequency modulated by a much smaller one. 

For initial values reported in the picture we have P = 

254.3 kV
2
ps (=0.5533 in dimensionless units), which 

gives 1 = 0.0797/m and 1 = 1.1590/m calculated by 

means of Eq. (18) – and these values perfectly coincide 

with those observed in Fig. 1. But the picture of the 

bullet’s evolution is much more complex – to analyse it let 

us perform the Fourier transform. 

In Fig. 2 we see the Fourier transform of  the bullet’s 

peak field b(z) together with the Fourier transform of 
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spatial width a(z) – at any distance it can be determined 

during calculations. 

  

Fig. 2. Frequency domain of peak field and spatial width. Propagation 

distance between 400 and 600m. Parameters of medium and bullet the 

same as in Fig. 1. 

We observe oscillations with more than two frequencies – 

these additional frequencies are simple multiples and the 

sum of 1 and 2. A similar picture can be seen at the 

frequency domain of temporal width w(z) – but its 

determination during calculation is much less accurate, so 

instead we shall analyse the Fourier transform of b(z) – as 

in Fig. 2. 

The quotients W(Z)/A(Z) and B(Z)/A(Z) are fixed 

during oscillations with normal frequency [3]:  
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so for 1 and 2 they are different. Calculating them by 

means of Eq. (17) we obtain for the considered example 

B1/A1 = -6.70 and B2/A2 = -0.396 in dimensionless 

units. On the other hand, the height of the Fourier peak is 

proportional to the amplitude of oscillation at a given 

frequency, so we can find these quotients numerically. In 

this way |B1/A1|num = 6.57 and |B2/A2|num = 0.410. 

Therefore, the description of the bullet’s evolution given 

in Fig. 1 as a superposition of two normal oscillations is 

quite accurate in the first order approximation. 

The second order terms (Z) satisfy Eqs. (16). In the 

right hand expressions we distinguish the terms describing 

free oscillations with frequency 1 and 2. The remaining 

terms represent harmonic forces inducing stimulated 

oscillations with frequency 1, 1+2 and 22. The 

amplitude of any component (Z) oscillating with a 

given frequency is proportional to appropriate force. In 

this way we can obtain the relation describing proportions 

between amplitudes of different components:  
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(20) 

where qm = Wm/Am.  

The numeric values calculated from Eq. (20) give the 

height of the peaks 21 and 22 about 3 times smaller 

while the height of the peak 1+2 is about 10 times 

smaller than that observed in Fig. 2 for oscillations of a(z) 

(for oscillations of b(z) the peak 22 is also 10 times 

greater). The reason is simple – we are far beyond the 

approximation | | << | |. For less power we obtain a 

much better situation, but most of higher order peaks will 

not be visible at the Fourier transform of numerically 

obtained functions a(z) and b(z). Moreover, the bullets 

carrying less energy propagate less stable – saturation 

(more important for greater power) stabilizes propagation. 

In fact, during propagation we observe a few additional 

elements not included in the description given in this 

paper:  

(i)  The deviation of the bullet’s shape from that given by 

Eq. (5). We could assume a bit better trial function taking 

into account the temporal profile suitable for a cubic-

quintic medium [9], but such a shape contains more 

oscillating parameters 

(ii) Third and even higher order harmonics 

(iii) Coupling end energy transfer between oscillating 

components of close frequencies (1, 21) and (2, 1+2) 

In spite of the above inaccuracies, the first order 

corrections agree with numerics very well – for instance 

the value of 2 up to 3 significant digits (1 one order 

worse). Therefore, the obtained relations (17)-(18) 

describe quite exactly the propagation up to a first order 

correction with respect to a stationary solution. Second 

order corrections give proper values of second order 

harmonics, but the amplitudes of these harmonics are 

evaluated rather qualitatively.  
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