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Abstract—Standard phase shifting interferometry (PSI) algorithms 

are used to obtain a phase map from fringe patterns. Their spectral 

properties can by analyzed using frequency transform function (FTF). In 

this paper a new multispectral phase shifting interferometry algorithm 

(mPSI) has been proposed. It is a combination of two simpler PSI 

algorithms and enables filtering out unwanted high frequency fringes 

from the image. It can be used to the increase measurement range of 

standard interferometry by analyzing the fringe pattern created by 

multiplication of two other fringe patterns recorded with the use of two 

different wavelengths. Numerical simulations of the mPSI algorithm and 

the results from the real setup are shown in the paper. 

 

 

Phase shifting interferometry (PSI) [1-2] algorithms are 

well known and very accurate techniques in optical 

testing. However, when a high step bigger than λ/4 (in 

classical Twyman-Green setup) exists in a measured 

object there is no simple solution to obtain a correct phase 

map. To overcome this problem  white light 

interferometry [3-4] can be used. Unfortunately, it is 

complicated and requires scanning an object in depth. 

Much simpler are multiwavelength techniques using 

fringe patterns and phase maps obtained by means of light 

sources with two or more different wavelengths [5-6]. In 

such a case the equivalent wavelength is calculated as: 
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 There are several phase map calculating and error 

compensating algorithms for eqv [7-8]. In this paper a 

new approach, using a multispectral phase shifting 

interferometry (mPSI) algorithm is presented. It is based 

on standard PSI algorithms and uses their ability to filter 

out unwanted harmonics [9]. 

 The fringe patterns obtained using different 

wavelengths can be written as: 

 
2

( , ) ( , ) ( , )cos ( , ) ,n n n
n

I x y a x y b x y L x y
 

   
 

 (2) 

where an(x,y) is the background coefficient, bn(x,y) is the 

contrast modulation coefficient and L(x,y) is the shape 

function of a measured object. Assuming that fringe 

patterns are normalized and omitting spatial dependence 

 
* E-mail: m.wengierow@mchtr.pw.edu.pl 

for clarity, for two different wavelengths a new fringe 

pattern can be calculated as a result of multiplying two 

single fringe patterns: 
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where ar is the new background coefficient and br is the 

new contrast coefficient. In the fringe pattern described as 

in Eq. 3 there exist two separate fringe frequencies. They 

correspond to two equivalent wavelengths:  

eqv- = (12)/|1−2| and eqv+ = (12)/(1+2). Adding 

temporal carrier o, Eq. 3 can be written as a complex 

function: 
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where  = eqv-/eqv+, 0 = 2c/eqv-, c is the speed of light, 

(eqv-) and (eqv+) are phase functions. The aim of the 

mPSI algorithm is to filter out ar, components dependent 

on eqv+ and one complex exponential component 

dependent on eqv-. The desired output signal can be 

written as: 
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where hm(t) is the filter's impulse response and 

Hm() = F[hm(t)] is its Fourier transform [10]. The 

minimum requirements for frequency transform function 

Hm() to obtain Ic(t) can be written as: 
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 The mathematical representation of a simple PSI 

algorithm is a linear quadrature digital filter. 
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where an is the constant coefficient,  is the Dirac 

distribution and T is the sampling rate. Then the phase 

obtained from the fringe patterns can be represented as: 
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where hi(t) and hr(t) are the imaginary and real 

components of h(t).The easiest way to fulfil Eq. (6) is to 

combine two different filters. The first one has to be able 

to filter out one of complex exponential component 

dependent on eqv- and the background. In addition it has 

to be as much insensitive to phase step miscalibration as 

possibile. The PSI algorithm which meets these criteria is 

an eight step algorithm with a bell-shaped window [2]. 
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The second filter has to filter out the components 

dependent on eqv+. However, a narrow filter would be 

sensitive to wavelength instability. To meet these 

conditions the filter with a cosinusoidal shape of 

frequency transform function centred around  = 0 has 

been proposed. 
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Convolution of h1(t) and h2(t) gives the wanted filter hm(t). 
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where c is the vector of real part constants, s is the vector 

of imaginary part constants and  is the sampling rate 

vector corresponding to phase steps. 
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As can be easily noticed, the shape of Hm() directly 

depends on used wavelengths and the mPSI algorithm 

should be adjusted whenever they are changed. Exemplary 

graphs of H1(), H2() and Hm() are shown in Figs. 1-2. 

Functions H2() and Hm() are drawn for the following 

parameters:  = 13.157, 1 = 632.8nm, 2 = 543.4nm,eqv- 

= 3846.3nm,eqv+ = 292.3nm. 

 
Fig. 1. Frequency transform functions of an eight step algorithm with a 

bell-shaped window (solid line) and cosinusoidal filter for 

 = 13.157 (dotted line). 

 
Fig. 2. Frequency transform functions of mPSI algorithm designed for 

1 = 632.8nm, 2 = 543.4nm. 

 To confirm the correct work of the proposed mPSI 

algorithm and its ability to extend the measurement range 

a numerical test was performed. The simulated object was 

a flat surface with 3 steps with a height equal to 300nm, 

900nm and 1500nm. A 3D view of this object is shown in 

Fig. 3. The fringe patterns for 1 = 632.8nm and 

2 = 543.4nm were numerically created. Then two phase 

maps were calculated using an eight step PSI algorithm 

with a bell-shaped window for 1 and 2. A third phase 

map was obtained using mPSI algorithms. Cross sections 

of phase maps after scaling to nanometers are shown in 

Fig 4. 
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Fig. 3. Simulated surface with height steps 300nm, 900nm and 1500nm. 

 
Fig. 4. Cross section A-A obtained for 1 = 632.8nm (a), 2 = 543.4nm 

(b) and eqv- = 3846.3nm (c). 

It is clearly visible that an mPSI algorithm is able to 

extend the measurement range to eqv- = 3846.3nm while 

using only one wavelength is insufficient to measure such 

discontinuities properly. 

 A real condition test of the mPSI algorithm was carried 

out in the Twyman Green setup using 

red = 632.822209nm and green = 543.369518nm. The 

tested object was a surface of 1m  gauge block wrung to 

platen. Phase maps were obtained using an eight step PSI 

algorithm with a bell-shaped window. Then they were 

used to create numerically normalized fringe patterns for 

the mPSI algorithm as in Eq. (3). An exemplary fringe 

pattern is shown in Fig. 5. 

To compare results phase maps for mPSI algorithm and 

for red were unwrapped and scaled to nanometres. Then 

their differences were calculated. Exemplary cross section 

over difference on gauge block surface after plane fitting 

is shown in Fig. 6. 

 

 
Fig. 5. Fringe pattern of gauge block wrung to platen obtained 

from Eq. (3). 

 
Fig. 6. Cross section B-B over difference of results obtained on gauge 

block surface. 

The standard deviation from zero difference on gauge 

block surface was 33nm, which corresponds to less than 

1/100 of eqv-. This is enough to use an mPSI phase map 

to unwrap phase maps obtained using a single wavelength 

and thereby achieve good accuracy and a wide 

measurement range. Moreover, the deviations were 

probably caused by background fluctuation due to 

speckles time averaging realized by a fibre shaking device 

in the interferometer setup [11]. It is noteworthy that an 

mPSI algorithm can be used to combine more than two 

wavelengths to measure very large discontinuities. 
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