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Abstract—We present the possibility of light beam-propagation 

control in a Kerr nonlinear medium through the efficient management of 

magnetically-induced linear and circular birefringences. Theoretical 

analyses, performed by dint of direct numerical simulations of modified 

nonlinear Schrödinger equation, as well as variational approximation, 

show consistent results.   

 

 

High-power optical beams in bulk self-focusing Kerr 

media are subject to instabilities that may lead to   a 

catastrophic collapse [1-2]. It occurs when the input 

optical power exceeds the threshold (critical) value. In the 

past decade, the collapse of optical beams in the Kerr-type 

media has been intensively studied, mainly in the context 

of control and complete elimination of the collapse. To 

this end, different methods for  collapse management have 

been proposed and theoretically implemented using 

suitable modifications of the nonlinear Schrödinger 

equation (NLSE) [3]. The modifications represent 

additional effects and phenomena in the respective 

physical model. The modified NLSE may result in the 

stable propagation of spatial solitons in bulk Kerr media. 

In this work, we study theoretically a possible method 

for collapse management achieved by means of a suitable 

combination of linear (Δnl) and circular (Δnc) optical 

birefringences. Specifically, magneto-optical effects are 

taken as a particular physical example, which enables the 

introduction of both types of birefringences 

simultaneously via the superposition of the Cotton-

Mouton and the Faraday effects [4]. In this paper, using 

both numerical simulations for the modified NLSEs and 

the variational approximation (VA) applied to the same 

system, we show efficient management of the collapse, 

which in specific cases may result in the suppression of 

the collapse. Our analyses show that, for a fixed value of  

optical power (above the critical one), the proper 

application of the magnetic field may change the beam-

propagation dynamics. However, complete stabilization of 

bimodal beams propagating in the form of two-
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dimensional solitary waves has not been obtained under 

the proposed conditions. Instead, quasi-stabile beams with 

their widths oscillating in the course of  propagation (with 

the onset of the collapse postponed to more than tens of 

thousands of diffractions lengths) have been predicted 

(see e.g. Fig. 3 and Fig. 6).  

Our theoretical model is based on a system of coupled 

(normalized) scalar modified NLSEs, derived for the 

fundamental beams (i.e. those with zero vorticity) in the 

presence of the self-focusing Kerr nonlinearity, under the  

assumption of the circular symmetry: 
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Fig. 1. Typical results of numerical simulations [based on  Eqs. (1)], 

showing the dependence of beam propagation on input optical power 

(related to a  normalized amplitude A of the initial Gaussian beam 

profile) and on the birefringence coefficients b, c. When the power 

increases (A-C), a spatial divergence of the beam may be reduced and 

eventually (when power exceeds the critical value) collapse of the beam 

is observed (with a distance for the onset of the collapse shorter for 

higher powers). For  constant optical power, different variants of the 

beam-propagation dynamics occur, depending on the birefringence 

coefficients  (C-F). 
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with typical normalization factors applied [1]. Here  

LRu , are the scaled complex slowly-varying envelopes of 

the right- and left- circularly polarized components, 

)2/(~,/~
0 DLzzwrr   are the normalized transverse and 

longitudinal coordinates, w0 is the initial width of the 

(Gaussian) beam, DL  is the diffraction length. Terms with 

real coefficients b and c describe the magnetically-

induced circular and linear birefringences, respectively 

(i.e. b~Δnc and c~Δnl). Since the propagation equations 

(Eqs. 1) support collapsing solutions, which can be 

predicted for certain geometry and initial conditions, 

detailed numerical simulations were performed in order to 

determine how the additional terms (including the 

birefringence coefficients) in NLSE may stabilize or 

destabilize the beam against the collapse. Typical results 

of  numerical simulations are summarized in Figs. 1-2. As 

one can see, when both coefficients are present in a proper 

ratio (i.e. for a particular combination of the magnetically-

induced birefringences), the collapse is suppressed, or the 

distance which the beam passes before the onset of the 

collapse may be efficiently extended (see Figs. 1E-F, 2C) 

with respect to the case of the same optical power 

associated with the input beam, but without the  external 

magnetic field applied (Fig. 1C). The effect of the 

combined birefringences for a high-intensity beam with a 

fixed normalized amplitude (A=1.135) is schematically 

shown in Figs. 2A-B, demonstrating the tunability of the 

collapse in the (b, c)-plane. Note that the black color in 

Figs. 2A-B (and then also in Fig. 3A) indicates the output 

widths that are close to the initial value w/w0 ≈1, defining 

thus the range of the birefringence coefficients for which 

the propagating beam could be potentially stable. As 

shown in Figs. 2-3, at a given value of the input power, 

the delay and/or the suppression of the collapse may be 

expected at the collapse-diffraction (for c>b) and 

diffraction-collapse (for b >c) borders. 

 

Fig. 2. The normalized width of the output beam (for an input amplitude 

A=1.135) and the propagation distance zMAX=20LD (A) and zMAX=100LD 

(B), as a function of the birefringence coefficients. Solutions that 

collapse at z<zMAX are represented by the gray color in the corresponding 

panels. Panel C shows the beam propagation for particular combinations 

of the birefringence coefficients as indicated in panel B. 

In addition to numerical solutions based on the coupled 

NLSEs, the variational approximation [5] is also suitable 

for the description of beam propagation in bulk self-

focusing Kerr media. The application of the VA 

significantly reduces the computation time, yet providing 

essential and accurate information about the collapse 

dynamics (as a function of the birefringence coefficients). 

In our case, the VA amounts to a system of three ordinary 

differential equations (ODEs) for the evolution of the 

normalized beam width, relative power and relative phase 

of the two polarization components (the underlying 

assumptions, detailed derivations and the final form of the 

mentioned equations can be found in Ref. [6]).  

 

Fig. 3. Results of simulations performed in the framework of the VA. 

Initial normalized total optical power [6] has been taken as 

685.02/~~ 22  wAN  for the best correspondence to the case presented 

in Fig. 2. As it was in the case of the direct numerical simulations of 

NLSEs, quasi-stable results are observed for the birefringence 

coefficients at the boundary between diffracting and collapsing 

solutions (marked by B and C). Parameter Δb in  panels B-C indicates a 

range of the variation of the circular birefringence coefficient (for given 

c) within which the onset of the collapse takes place for the distance 

larger than 100LD. 
 

  

  

Fig. 4. Complicity of the solutions (obtained in the framework of the 

VA and representing changes of the beam width in the course of the 

propagation for Ñ=0.685) at the boundary between the collapse and 
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diffraction (for the case when b>c). Here b was set to 1.69, for which 

slight changes in the value of the linear birefringence coefficient may 

lead to different beam-propagation dynamics as shown in Figs. 5-6 

(where solutions in the form of instantaneous collapse or diffraction, 

similar to those in Fig. 1A-B,  have been omitted). Conditions for the 

(quasi-) stabilization of the beam may be found for combinations of the 

birefringence coefficients for which regular oscillations of the beam 

width are observed (panel D) and the largest, the smallest and final (here 

obtained for zMAX=5000LD) beam widths are the closest to the initial 

one (see also Fig. 6).  
 

  

  

Fig. 5. Examples of different beam propagation dynamics obtained for 

fixed value of the circular birefringence coefficient b and minor 

changes of the linear birefringence coefficient c, showing the transition 

between diffracting and irregularly oscillating solutions. Further 

increment of b allows regular oscillations of the beam width to be found 

(see Fig. 6). 
 

 

  

 
 

Fig. 6. Results for the regular oscillations of the beam width on the way 

of propagation. By precise matching the birefringence coefficients it is 

possible to find quasi-stable (oscillating) solutions for which beam 

width is slightly changing (see panels B, D). In panel C results of the 

Fourier transform performed on the beam width (as a function of the 

normalized propagation distance) are presented, showing the change of 

the frequency of the beam width oscillations [values written (in blue) in 

each  graph (in C) represents percentage changes of the beam width 

defined as:  
MAXMINMAX

www ~/~~  ].       
 

 

Fig. 7. Pairs of the birefringence coefficients (c, b) corresponding to the 

quasi-stable oscillating solutions with the single period and the 

minimum amplitude of the oscillations of the beam width (red points). 

For the optical power considered (i.e. for Ñ=0.685) the estimated ratio is 

b/c=4.033.  For each pair, the frequency of the beam width oscillations 

(bars) are given, together with percentage of the beam width changes 

(values over red points).     
 

Detailed results of the theoretical analyses performed in 

the framework of the VA are presented in Figs. 3-7, 

showing a variety of possible solutions (depending on the 

precise adjustment  of the birefringence coefficients) - 

including quasi-stable ones [obtained for the specific ratio 

(constant for fixed optical power) of the birefringence 

coefficients].     

 

In conclusion, we have shown theoretically that joint 

optical birefringences, as proposed here could be achieved 

in practice through a combined use of the Cotton-Mouton 

and Faraday effects, may effectively affect the dynamics 

of the optical collapse in bulk self-focusing media, leading 

to its postponement or arrest (for a fixed value of optical 

power). Our results offer new possibilities towards the use 

of magneto-optic effects for controlling various nonlinear 

phenomena. Moreover, because similar theoretical models 

are commonly used in other fields, such as e.g. sets of 

coupled Gross-Pitaevskii equations to describe Bose-

Einstein condensates, conclusions drawn from our 

theoretical analyses may be adopted to other physical 

media as well. 
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