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Abstract—The paper generalizes paraxial complex geometrical 

optics (PCGO) for Gaussian beam (GB) propagation in nonlinear media 

of the Kerr type. PCGO deals with ordinary differential equations for the 

beam amplitude and for complex curvature of the wave front which 

describes the evolution of an axially symmetric GB in a Kerr type 

nonlinear medium. It is shown that PCGO readily provides the solutions 

of an NLS equation obtained earlier from the diffraction theory on the 

basis of an aberration-free approach. Besides reproducing the classical 

results of self-focusing, PCGO readily describes the influence of initial 

curvature of the wave front on the beam evolution in a medium of the 

Kerr type.  

 

 

The great advantage of a complex geometrical optics 

method (CGO) is its ability to describe diffraction 

processes on the basis of ordinary differential equations. 

This property of CGO was demonstrated as far back as 

40-50 years ago [1-3] (see also review papers [4-6] and 

Ch.5 in the book [7]).  

In this paper we develop paraxial complex geometrical 

optics (PCGO) to describe the propagation and diffraction 

of axially symmetric Gaussian beams in nonlinear media 

of the Kerr type. This approach readily provides the basic 

results of nonlinear optics, obtained for Gaussian beams 

still 40-50 years ago [8, 9]. PCGO does not only 

reproduce former results, albeit in an easier way, but it 

also supplies a number of new results which are the 

subject of this paper. In particular, PCGO allows to 

include into analysis the initial curvature of the wave front 

and to study its influence on GB evolution in the media of 

the Kerr type. 

  For an axially symmetric wave beam in an axially 

symmetric nonlinear medium the PCGO method suggests 

the following solution  

 

      2/)(expexp),( 2

00  zBzikzAikAzu  .      (1) 

 

The real and imaginary parts of the complex curvature  

IR iBBB   determine the real curvature   of the wave 

front and the beam width w , correspondingly: 
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where 
00 /2 k  and

0 is the wavelength of the beam 

in vacuum. The PCGO method deals with the Riccati 

equation for complex curvature B: 
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the equation for GB complex amplitude 
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and the second order equation for GB width evolution,  
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Parameter   for an axially symmetric medium equals:  
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The above equations were derived in paper [10]. In 

nonlinear media of the Kerr type the permittivity depends 

on the beam intensity 
2

u   
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where coefficient NL  is assumed to be positive: 

0NL . Substituting wave field (1) into Eq. (7) one 

obtains  
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In fact, the PCGO method treats a nonlinear medium of 

the Kerr type as a smoothly inhomogeneous medium 

whose profile is additionally modulated by GB parameters 

w  and A . Therefore, the PCGO method presented in the 

past for a linear case can be also applicable for nonlinear 

media of the Kerr type. In accordance with the relation  
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one can present Eq. (8) as: 
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Taking into account the relation in Eq. (6), the alpha 

parameter in Eqs. (3,5) can be given as:  
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where the first term refers to the linear medium, 
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and the second term accounts for nonlinear processes: 
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In conditions when the contribution of a linear term in 

Eq. (11) is negligibly small, the Riccati equation (3) takes 

the form 
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This equation describes the GB evolution under the 

influence of nonlinear processes without any contribution 

of linear refraction. Equation (5) for the beam width 

evolution in a medium of the Kerr type takes the form 
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Introducing a dimensionless beam width  0wwf  , Eq. 

(15) can be rewritten as 
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where  02

0wkLD   is the diffraction length and 

   2
0/0 AwL NLNL   is the characteristic nonlinear 

scale. Equation (16) can be also presented as 
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where dimensionless distance 
DLz /  is involved. It 

can be proved that 
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where     22 00
8

1
AcwP   is the total beam power and 
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1
  is the critical power. As a result, the 

equation for GB width evolution in a nonlinear medium of 

the Kerr type takes the form: 
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Integrating once Eq. (19) and assuming that 0| 0z
dz

df , 

which corresponds to the GB with a plane initial wave 

front, one obtains the following solution 
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The above PCGO result is in total agreement with the 

solution of the nonlinear parabolic equation presented in 

the pioneering papers [8, 9]. Thus, the PCGO method 

reproduces the classical results of nonlinear optics but in a 

simpler and more illustrative way.  

The first integral of Eq. (16) takes the form 
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In accordance with [10], the value dzdf /  at 0z  

presents the squared initial wave front curvature:  
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In accordance with Eq. (18), Eq. (21) takes the following 

form  
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Taking advantage of differential relation 

  2222 4)( fff   in the above equation, one obtains: 
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and differentiating once (24) we have : 
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As a result, the equation for beam width evolution in a 

nonlinear medium of the Kerr type takes the form 
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Then Eq. (26), has the following solution 
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It is worth analyzing the following partial cases: 

1) Sub-critical regime:
critPP  . In the case of a divergent 

beam, answering to positive curvature   00  , 

diffraction widening prevails over self-focusing effect and 

GB width increases. For a convergent beam, 

corresponding to   00  , the beam width initially 

decreases reaching its minimum value  
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and next the diffraction widening dominates and the beam 

width starts increasing.  

2) Critical regime 
critPP    NLD LL  . In this case 

diffraction divergence and self-focusing effects 

compensate each other and 2f  depends only on the sign 

of  0 :  
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As a result, the beam width w changes as a linear function 

of distance z : 
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In this solution, factor   00   leads to a growth of the 

GB width, whereas for   00  , one obtains a stationary 

solution with w=w(0). For   00   the beam is focused. 

3) Over-critical regime 
critPP  . Let us involve the 

characteristic beam power   22 01 Dcrit LPP  . When 

the total power P  is equal to P , quadratic term in 

solution (27) happens to be zero and parameter 2f  

becomes a linear function of z . As a result beam width is 

equal to 
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For the GB power P , which is greater than the critical 

power and smaller than characteristic power 

  22 01 Dcritcrit LPPP  , a positive value of the initial 

wave front curvature   DL/10   eliminates the collapse 

and, as a result, the beam width increases . One can notice 

that a negative value of initial phase front curvature 

  DL/10   only enhances the beam collapse effect. 
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