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Abstract—A spontaneous symmetry breaking phenomenon or optical 

bifurcation occurs in media with some kind of symmetry when self-

focusing nonlinearity is applied. In this manuscript that effect is 
investigated for the Kerr nonlinearity in structures with periodical 

distribution of a refractive index. Not only the symmetry bifurcation of 

the fundamental mode but also the properties of beam propagating in 
such structures have been studied. Spontaneous symmetry breaking has 

been presented both as a function of total beam power and as a function 

of relative refractive index change. The results can be utilized for all 
optical switching effects.   

 

 

 Spontaneous symmetry breaking or just bifurcation [1] 

is an effect which occurs in structures with symmetrical 

distribution of the refractive index where self-focusing 

nonlinearity is significant. Both wave propagation in a 

nonlinear medium and time evolution of Bose-Einstein 

condensate (BEC) is described by the same equation. It is 

the Nonlinear Schrödinger Equation (NLSE) [2] but in 

quantum mechanics it is also used as the Gross-Pitaevskii 

Equation [3]. When the total power of a beam (or energy 

of the Bose-Einstein condensate) exceeds some threshold 

value, the ground state symmetry is broken and the 

system minimizes energy in an asymmetrical state [4]. In 

a special case of an optical directional coupler, the 

distribution of the refractive index has two symmetrical 

maxima. Analogically, in Bose Einstein condensate such 

a special case is just the double well symmetrical 

potential. In these problems the ground state, which is the 

basic solution of the NLSE, is also symmetrical and its 

shape corresponds to the shape of the refractive index 

distribution or potential distribution for an optical 

structure and a double quantum well, respectively. Above 

the critical value of beam power (in the optical case) or 

the energy of condensate (in quantum mechanics case) 

only an asymmetrical solution of the NLSE is stable, and 

the light amplitude distribution is not the same for both 

cores of the coupler, similarly the distribution of cold 

atoms is not symmetrical in such a double well system. A 

spontaneous symmetry breaking effect has been observed 

in the BEC [5], as well as in nonlinear optics, e.g. in a 

photorefractive material [6]. Optical bifurcations have 

been studied in nonlinear optics in a directional coupler 

[7, 8], dual core fibers when a spatially continuous wave 

propagates [9], but also in dual core fibers for spatial 

solitons [10]. That phenomenon has also been observed 
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for nonlinear coupled waveguides with the Bragg gratings 

[11] when the Kerr nonlinearity is applied. It has been 

studied in discrete systems, e.g. for solitons in dual core 

structures [12, 13]. For one-dimensional systems, e.g. 

one-dimensional lattice, the simplified model with 

nonlinearity concentrated only in cores and in a very close 

region around them can be used [14]. In that case, the 

discrete NLSE can be applied, where nonlinear terms are 

as delta functions. 

 In this paper the results in a structure with a double 

periodical distribution of the refractive index (Fig. 1b) are 

presented. Such a refractive index profile can be obtained 

by inserting a liquid crystal layer between a system of 

ITO electrodes [15] (Fig. 1a). All simulations have been 

run for a beam wavelength λ=532nm.  
 

a)                               b) 

 
 

Fig. 1. a) Liquid crystal structure between two systems of ITO 
electrodes and b) corresponding effective refractive index profile n0(x). 

 

That refractive index distribution is a counterpart of 

potential in the BEC which has been analyzed both 

analytically and experimentally. For sufficiently deep 

minima in the refractive index distribution (like in the 

studied case), the beam launched to one of the two central 

cores will propagate only in these cores, switching, in a 

linear case, between them. It corresponds to a usual 

directional coupler which possesses only two cores, but 

light propagation is equivalent to that in the structure 

studied in this paper. Simulations of propagation 

properties have been carried out by using a standard 

Beam Propagation Method [16-23] with a scalar 

algorithm. This method calculates light amplitude by 

using values from the previous step. It can be modified by 

substituting an imaginary distance, the method being 

called ID-BPM [24-26]. The imaginary distance 

corresponds to an imaginary propagation constant which 

in such a form is an absorption coefficient. In 
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consequence, all higher order modes (solutions of the 

NLSE) are absorbed and only the fundamental mode 

(with the highest propagation constant) survives. In the 

case of the Kerr nonlinearity, the refractive index is given 

as: 

       2

20 Enn xnxx  , (1) 

where the first term is the linear refractive index 

distribution and the second is the nonlinear refractive 

index change    depending on the local value of light 

intensity. Since the light amplitude is normalized, the 

total beam power is equal: 

   dxxn
2

2 EP . (2) 

It is convenient to divide the structure into two identical 

parts and calculate the power from    to 0 (P1) and from 

0 to   (P2). Then the asymmetry coefficient can be 

defined as:  
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It can be applied to the description of the spontaneous 

symmetry breaking phenomenon, when the total power 

and the nonlinear refractive index change.  The 

asymmetry of the basic NLSE solution (basic mode) has 

been presented as a function of total beam power (Fig. 2)  
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Fig. 2. Asymmetry coefficient of the beam intensity distribution (defined 

in Eq. (3)) as a function of total beam power. 
 

This function breaks symmetry for power P ~ 0.006 [µm], 

but above this power value there still exists symmetrical 

mode, which is unstable and tends to an asymmetrical 

branch under the influence of disturbance. The 

asymmetry coefficient has also been investigated as a 

function of nonlinear relative refractive index change 

(Fig. 3). 
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Fig. 3. Asymmetry coefficient of beam intensity distribution as a 
function of relative refractive index change Δnmax in the maximal 

intensity of a beam. 

In Fig. 2 one can see that there exists some threshold 

value of the power, above which the symmetry of 

fundamental mode is broken. The only solution which 

exists above this critical point is an asymmetrical 

solution. It tends with the power to all asymmetrical 

solutions, for which the asymmetry coefficient is 1 or −1.  

 

 For numerical observations of beam propagating in the 

structure presented in Fig.1, the BPM method has been 

implemented.  Propagation properties strongly depend on 

the way of beam launching. In a linear case, the beam 

launched to one core will switch to the other and back 

(Fig. 4). 

 

 
 

Fig. 4. Beam propagation in a linear case. 
 

 

In this case, the beam oscillates between the left and right 

cores. It corresponds to the solution on the bifurcation 

diagram below the threshold power value when the basic 

mode is symmetrical. Such propagation properties are the 

result of superposition of two linear modes – basic 

solutions of the NLSE. The first is symmetrical and has 

two identical maxima and the second is antisymmetrical, 

which means in one core there is a maximum and in the 

other one – a minimum. The interference of these modes 

gives intensity distribution switching between the cores.  

In a nonlinear case, not all energy transfers to the 

neighbour core during propagation (Fig. 5).  
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Fig. 5. Partially switching of the beam in a weak nonlinear regime. 

 

Such propagation cannot be described analogically like in 

the previous case because it is nonlinear propagation 

which is not a superposition of nonlinear modes. The 

symmetrical solution in a strong nonlinear regime is 

unstable and transforms to the asymmetrical mode.  

When nonlinearity is sufficiently strong there is no 

switching between both cores. The beam launched into 

one core will propagate only in that core and the 

asymmetry coefficient is then constant and equal to 1 or 

−1 (Fig. 6).  

 

 
 

Fig. 6. Strong nonlinearity – no optical tunnelling effect. 

 

In conclusion, below the critical point there exists a 

symmetrical solution and its counterpart – an 

antisymmetrical solution. Both are stable and the beam 

propagating in such a linear case is just a superposition of 

these two modes: all switches between the cores. Above 

the threshold power absolute value the asymmetry 

coefficient is higher than 0, but lower than 1, which 

means that a partially asymmetrical solution exists and 

during propagation not all power is tunnelling. The last 

case: θ = 1 or −1 and it corresponds to no switching in 

propagation and the only stable NLSE solution has the 

power in one of the cores.  

The critical point, where symmetry is broken is neither 

phase transition of the first kind nor of the second. There 

is no discontinuity of θ function and its derivative is also 

continuous.  

Further analytical and numerical investigations of the 

spontaneous symmetry breaking effect are both very 

prospective because, in that phenomenon, the beam power 

influences propagation properties. Light is used not only 

as a propagated signal but also as a steering signal. It 

allows to create optical systems where electrons are 

redundant, e.g. optical gates and other optical processing 

devices.  
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