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Abstract—We unveil the use of two helically distributed amplitude 

masks for controlling the damping coefficient of Gaussian-like 

windows. We show that by introducing an in-plane rotation between the 

members of the proposed pair, one eliminates the polar dependence of 

the masks. Then, one can tune the half-width of radial Gaussian-like 

apodizers. In a similar manner, we show that if one uses two helically 

distributed refractive elements, as a pair, then one can control the 

maximum value of the optical path difference; which is useful for 

tuning several radial focalizers. 
 

 

Certain amplitude masks are useful for expanding the 

axial irradiance distribution [1-3]. Other phase masks are 

able to reduce the influence of focus errors on the 

Modulation Transfer Function (MTF) [4-9]. However, 

these phase masks generate unwanted oscillation around a 

tendency curve. A tunable Gaussian apodizer can reduce 

these undesirable oscillations [10]. 

According to Plummer, Baker and van Tassel [11], 

variable optical power lenses were first suggested by 

Kitajima [12] and later on by Birchall [13]. Lohmann [14-

17] and Alvarez [18, 19] re-discovered independently 

Kitajima's technique for implementing varifocal lenses. 

By employing helical wavefronts, one can generate 

variable Fresnel patterns [20, 21], as well as vortex lenses 

[22]. 

Here, our aim is twofold. First, we present the use of a 

pair of helical distributed amplitude masks for tuning the 

damping coefficient of Gaussian-like windows. Second, 

we show that by using two suitable helical refractive 

elements, one can control the optical path difference of 

radial focalizers. 

In Fig. 1 we depict schematically the optical system 

under discussion. In what follows we describe two 

amplitude masks that form a pair, which acts at the pupil 

aperture. By employing polar coordinates, the amplitude 

transmittance of the first amplitude mask is 
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 In Eq. (1) the Greek letter ρ represents the radial spatial 

frequency variable, whose maximum value is the cut-off 

spatial frequency Ω. Hence, the transparent circular 

aperture is denoted as circ(ρ/Ω). The Greek letter φ is the 

polar angle. The lower case letter "c" is a dimensionless 

damping factor. The radial variation of the mask is 

represented by the real function F(ρ); such that 0≤F(ρ)≤1. 

 

 

 
 

Fig. 1. Schematic diagram of the optical setup. 

In a similar fashion, the amplitude transmittance of the 

second mask is 
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It is worth noting that 

1 20 0lim R (ρ, φ) lim R (ρ, φ) 1   .    (3a) 

 

And that 

2
R (ρ, 2 ) 1  .         (3b) 

 

Now, we form a pair by placing the two previously 

described masks in contact. If we introduce an in-plane 

rotation between the elements of the pair, say by an angle 

β, then the amplitude transmittance is 
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By substituting Eqs. (1) and (2) in Eq. (4) we obtain 
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From Eq. (5) we have that the overall amplitude 

transmittance is independent of the polar angle φ. 

 

 
 

Fig. 2. Gray level pictures and amplitude transmittances: a) first 

element, b) second element, c) the pair. 

Furthermore, one can control the damping factor of the 

pair, simply by changing the value of β. In Fig. 2 we 

display the gray level pictures, as well as the plots of Eqs. 

(1), (2) and (5). For the pictures at the bottom of Fig. 2, 

we consider that β = π/10; and we illustrate the control of 

a Gaussian profile, F(ρ) = (ρ/Ω)
2
. We note here that our 

proposed pair is equally useful for controlling radially 

distributed hyper Gaussian masks, 

S
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as well as for annularly distributed masks. For this latter 

case, Eq. (5) becomes 

Sβ
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  ,          (7) 

 

where ζ = (ρ/Ω)
2
 – 0.5. In Eqs. (6) and (7) the Latin letter 

"s" is any real number. Hence, the following clarification 

is in order. If we set s = 2 in Eq. (6) we have a Gaussian 

attenuating mask. For 0 < s < 2, we have a subgaussian 

mask. And if 2 < s, then we have a supergaussian mask. 

The same notation applies for the annularly distributed 

masks in Eq. (7).  

Next, we present the complex amplitude transmittances of 

two refractive elements, whose phase delays are helically 

distributed. We show that by rotating the proposed 

elements, one can implement tunable versions of axicons, 

lenses and axilenses. Again, by using polar coordinates 

the complex amplitude transmittance of the first refractive 

element is 

 

   
1

iaφG(ρ) ρ
circ( )

Ω
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In Eq. (8) the lower case letter "a" is a maximum value of 

the optical path difference. As before, the Greek letter φ is 

the polar angle. The radial phase variation is described by 

the real function G(ρ); such that 0 ≤ G(ρ) ≤ 1. The 

complex amplitude transmittance of the second refractive 

element is 

 

   
2

-ia φG(ρ) ρ
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We form a refractive pair; by placing in contact the two 

previously described elements. If we introduce an in-plane 

rotation; say by an angle β between the elements, the 

complex amplitude transmittance of the proposed pair is  
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From Eqs. (8), (9) and (10), we obtain that 

 

   ( )
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Ω
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From Eq. (11) we recognize that the pair is able to 

generate a complex amplitude transmittance that is 

independent of the polar angle φ. It is also apparent from 

Eq. (11) that one can control the maximum value of the 

optical path difference by changing the value of β.  

For illustrating the latter result we consider the following 

examples. For an axicon [23] the function G(ρ) is  

 

    G(ρ) (ρ/Ω) .        (12) 

 

Of course, for a lens we have that 

 

    
2G(ρ) (ρ/Ω) .       (13) 

 

And finally, for an axilens [24] we have that 
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2
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In Fig. 3, along the first column, we plot the phase 

profiles in Eq. (12), (13) and (14). We note that since the 

second phase mask is the complex conjugate of the first 

mask, it is sufficient to visualize only one element of the 

pair. In Fig. 3, along the second column, we display the 

interferograms associated with one element of the pair. 

 
  

 

 

Fig. 3. Helical versions, and interferograms of: a) an axicon, b) a lens, 

and c) an axilens. 

For the plots along column 1, in Eq. (11), we set a = 1. 

However, for the interferograms we employ the value a = 

25. 

 

Summarizing, first, we have presented the use of two 

attenuating masks, which have helically distributed 

amplitude variations. We have proposed to use two masks 

for forming a pair. We have shown that by introducing an 

in-plane rotation between the elements of the pair, one can 

control the damping coefficient of almost any radially 

varying profile. By tuning the damping coefficient, one 

controls the half-width of the Gaussian apodizers. We 

have noted that the proposed procedure is useful for 

tuning subgaussian windows or supergaussian windows. 

We have also noted that the proposed device is useful for 

tuning apodizers that have annularly varying profiles.  

Second, we have discussed the use as a pair two refractive 

elements which have helically distributed phase 

variations. We have noted that the complex amplitude 

transmittance of the first element is the complex conjugate 

of the transmittance associated with the second element. 

We have shown that by introducing an in-plane rotation 

between the elements of the pair, one can control the 

maximum value of the optical path difference, of almost 

any radial phase variation. Hence, we have proposed the 

use of the refractive pair (whose elements have helically 

distributed phase variations) for implementing tunable 

axicons, lenses, and axilenses. 
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