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Abstract—We present a holographic method for defocus error 

compensation in tomographic phase microscopy, which enables high 

quality reconstruction in the presence of a meaningful run-out error of 

the measurement system. The proposed method involves indirect 

determination of the sample displacement from the in-focus plane. The 

sought quantity is deduced from the transverse movement of the rotating 

sample, which can be determined with high precision using correlation-

based techniques. The proposed solution features improved accuracy 

and reduced computation time compared to the conventional 

autofocusing-based approach. The validity of the concept is 

experimentally demonstrated by tomographic reconstruction of an 

optical microtip. 
 

 

Tomographic phase microscopy (TPM) is a laser 

interferometric method enabling quantitative measurement 

of micro-scale semi-transparent samples. Its main 

advantage over conventional interferometric techniques is 

the possibility of charactering a three-dimensional (3D) 

internal structure of the specimen, instead of providing 

integrated information about phase delays [1]. In TPM, a 

laser interferometric (or digital holographic) microscope 

is used to obtain a set of quantitative phase images of the 

sample collected at various illumination directions in the 

range 0-180º. During the measurement, the scanning of a 

relative angle of illumination with respect to the sample is 

usually achieved by rotating the object under fixed on-axis 

illumination. In the next step, the captured angular 

measurements are processed with a filtered backprojection 

algorithm (FBPJ) [2]. The result of the processing is the 

reconstruction of a 3D distribution of the refractive index 

inside the specimen. 

The basic assumption underpinning the FBPJ algorithm 

is that probing radiation travels through the sample along 

straight lines. Consequently, the 2D phase maps are 

interpreted by FBPJ as line integrals of the refractive 

index evaluated along the illumination directions. As it 

was proven by many researches, the straight line 

propagation approximation is accurate for sharp imaging 

conditions [3, 4]. However, in the presence of a defocus 

error, the reconstructed 3D structure suffers from blurring 

and other diffraction-related deformations. In fact, all 

conventional microscopy systems use high NA optics to 

achieve high transverse resolution, which inevitably 

shrinks the depth of focus (DOF) to a level of a few 
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microns. Thus, defocusing phase images is a key factor 

affecting the final quality of tomographic reconstructions. 

The required sharp imaging condition not only puts 

restrictions on the spatial extent of an investigated sample 

but it also implies that the sample rotation has to be done 

precisely around the axis passing through the centre of the 

sample. Otherwise, the sample displacement in the 

direction of the optical axis causes defocusing of the 

phase maps and thus erroneous tomographic 

reconstruction. However, precise positioning of the 

sample in a rotary module of the TPM system is time-

consuming and requires specialized equipment. Even 

more importantly, in some circumstances accurate 

alignment of the sample is inaccessible. This is often the 

case in studies of biological objects [5] and dynamic 

processes. Moreover, the intentional usage of the off-axis 

rotation scheme allows minimizing the effect of coherent 

noise in tomographic reconstruction [6]. 

This work presents a numerical method for defocus 

error compensation in TPM, which allows fulfilling the 

FBPJ requirement for sharp imaging conditions and at the 

same time reduces the demand for precise aligning of the 

sample in a TPM system. The proposed method exploits 

the fact that during an off-axis rotation the sample travels 

along a circular trajectory around the rotation axis. The 

vector of the sample displacement can be decomposed 

into two orthogonal components, one in the direction of 

the optical axis (axial shift Sz) and the second in the plane 

parallel to the detector (transverse shift Sx). In the 

proposed method, the axial displacement, which is related 

to defocusing, is holographically compensated by 

numerical propagation of each angular measurement to 

the in-focus position with a propagation distance 

zprop=−Sz(α), where α is the angular position of the 

sample. However, before this can be accomplished, the 

required amount of the axial displacement has to be 

determined. In our approach we propose to take advantage 

of a mutual relation between the displacement vectors: 

Sx=Rcosα and Sz=Rsinα, where coordinates (R, α) 

describe the position of the sample in the polar system 

having its origin at the rotation axis. Thus, Sz can be 

determined from the transverse component Sx, which in 

turn can be calculated with very high precision (a fraction 
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of a micron) by using one of the tracking techniques, e.g. 

correlation [7] or the centre-of-mass determination [8] 

method. 

It is worth mentioning that a similar algorithm for 

defocus error compensation was already presented [6,9]; 

however, it differs from the approach proposed here in the 

way of determining axial displacement. In the previous 

approach Sz is detected using a holographic autofocusing 

technique [10, 11], implying a heavy computational load. 

Moreover, the accuracy of defocus compensation is 

significantly reduced due to a substantial error of the 

autofocusing algorithm (accuracy at the level of a few 

microns) [12]. Furthermore, in contrast to our approach, 

the autofocusing-based method can be applied solely for 

objects with pure phase properties. 

Before going into details of the proposed defocus 

compensation method, we briefly explain the 

measurement process in TPM. Figure 1 presents a 

conventional TPM measurement system, which is based 

on Mach-Zehnder configuration [13]. The collimated laser 

beam is divided by a beam splitter BS into an object and a 

reference beam. The object beam passes through the 

sample which is attached to the rotary holder and 

immersed in an index matching liquid IC. Next, the object 

wave is imaged by a microscope objective MO on a CCD 

detector, where it interferes with the reference beam 

forming an on-axis hologram. To obtain quantitative 

phase images a mirror M3 in a reference arm is attached 

to the piezoelectric transducer (PZT), allowing 

implementation of the temporal phase shifting method 

[14]. 

 

Fig. 1. The scheme of Mach-Zehnder holographic setup. 

Using the TPM system a set of phase images is obtained 

as the object is gradually rotated by 180º. After removing 

2π ambiguity, phase images are subjected to the FBPJ 

algorithm, which can be expressed via: 

  
2π

0

O( ) φ ( , )exp i2π α,x x x xx,y,z f f y f x df d





   
 (1) 

where 
αφ ( , )xf y  denotes the 1D Fourier transform of the 

phase map φα(x,y) calculated in x-direction, and fx is the 

spatial frequency. The last step of tomographic evaluation 

is scaling to the refractive index values: 

 λ
( ) ( ),

2π x

n x, y,z O x, y,z 
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where ∆x is the sampling pitch in the object space. 

Providing that the phase measurements φα are sharply 

focused, the FBPJ algorithm delivers an accurate 

reconstruction of the 3D sample. However, as it was 

already mentioned, in the case of the off-axis rotation, 

which is schematically presented in Fig. 2, the inevitable 

defocusing causes degradation of the reconstruction. 

 
Fig. 2. Schematic diagram of the sample trajectory during rotation. 

As it can be noticed from Fig. 2, the amount of 

defocusing in individual measurements can be deduced 

from the transverse displacement of the sample: 

Sx(α)=R[cos(α+αo)−cosαo], where R depicts the radius of 

the rotation and αo is the initial angular position of the 

sample. By tracking the sample position in the images and 

fitting a cosine function to Sx, we can efficiently compute 

Sz via: 

 (α) sin(α α ) sinα ,fit fit fit

z o oS R     
 (3) 

where R
fit

 and αo
fit

 are parameters obtained from the 

fitting. The detection of Sx can be handled e.g. with a 

correlation method [7], which consists in finding the 

maximum of a cross-correlation peak between two 

successive angular images. The method provides the 

accuracy of tracking on the level of one micron [7]. It is 

notable that the final accuracy of Sz estimation is even 

improved with respect to this value. This is owing to the 

averaging effect of fitting the cosine to the tracking results 

obtained for multiple measurements φα(x,y). 

The proposed defocus compensation method was 

experimentally tested with a tomographic measurement of 

an optical microtip [15] (Fig. 3). For this sample, 90 

measurements were taken in a range of 180º using the 

TPM system depicted in Fig. 1. 
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Fig. 3. Exemplary on-axis hologram of a polymer microtip 

manufactured at the extremity of a fiber. 

After unwrapping, the correlation-based transverse 

tracking method was employed, giving the vector shown 

in Fig. 4 with a dotted blue line. By calculating the cosine 

fit to Sx (red line) and evaluating Eq. 3, the amount of the 

axial sample displacement was obtained (the green line in 

Fig. 4). The estimated Sz was used for the compensation of 

defocus through calculation of an inverse diffraction 

formula [16] with a propagation distance zprop(α)=−Sz(α). 

Afterwards, the corrected phase maps were processed with 

the conventional FBPJ algorithm. The finally obtained 3D 

reconstructions, calculated with and without defocus 

compensation, are presented in Figs. 5(a-c) and (d-f), 

respectively. In Figs. 5(a-c) the reconstruction of the core 

in the microtip is clearly visible, while in Figs. 5(d-f) 

several false artefacts have been reconstructed.  

 
Fig. 4. The charts of axial and transverse displacements. 

In conclusion, the proposed defocus compensation 

method enables high quality reconstruction, even in the 

presence of relatively strong defocusing of phase images 

(here maximum defocus max[|Sz|]=40μm). The proposed 

method features high accuracy of axial displacement 

determination and low computational complexity. 
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Fig. 5. Vertical and horizontal cross-sections of 3D reconstructions of a 

microtip obtained with (a-c) and without defocus correction (d-f). 
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