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Abstract—We unveil the use of two grey level masks for controlling 

continuously the attenuation of a spatial filter, which has an 

exponentially decreasing hyperbolic profile. We present analytical 

expressions that help to visualize the influence of our proposed grey 

level masks for reducing the side-lobes of a 1-D point spread function.  

 

 

 In optical spectroscopy for describing the use of non-

uniform windows, the most commonly used notation is 

optical apodization. The word apodization was coined by 

Pierre Jaquinot for denoting the reduction of the side-

lobes of the impulse response, or point spread function 

(PSF) [1]. 

When an amplitude mask is used for reducing the side-

lobes, then as a secondary effect, the amplitude mask 

broadens the main lobe of the PSF. Some experts may not 

be aware of the following analogy; which exploits 

McCutchen theorem [2-6].  

If one considers the axial point spread function (axial 

PSF) of an optical system, then reducing the side-lobes 

and widening the central lobe is useful for broadening the 

axial impulse response. And therefore, an apodizing mask 

with radial symmetry is useful for increasing the focal 

depth of an optical system [7-10].  

We note that amplitude masks, with moderate 

absorption, also find useful applications for reducing the 

spurious oscillations, in the modulation transfer functions 

(MTF), which are generated by employing phase masks 

that diminish the impact of focus error [11-13]. 

Here our goal is to present the use of two grey level 

masks for controlling the damping factor of an apodizer, 

which has an exponentially decreasing hyperbolic profile. 

We unveil analytical expressions that helps to visualize 

the influence of our proposed masks for reducing the 

side-lobes of the PSF.  

   For our present discussion we consider the telecentric, 

optical processor depicted in Fig. 1. At the Fraunhofer 

plane, of the optical setup in Fig. 1, we have two identical 

1-D, amplitude masks that work as a pair. The pupil 

aperture, along the horizontal axis, is 2Ω. Hence, if the 

Greek letter μ is a spatial frequency variable; the cut-off 

spatial frequency is Ω.    
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Fig. 1. Optical setup under consideration.  

At the Fraunhofer plane, of the optical setup in Fig. 1, the 

pupil aperture is represented by the function rect(μ/2Ω). 

This function is equal to unity if |μ| ≤ Ω; otherwise the 

rectangular function is equal to zero. For avoiding any 

mechanical vignetting, we consider that the masks are 

larger than the pupil aperture. For this purpose the lateral 

extension of the masks is represented as rect(μ/6Ω). In 

mathematical terms, the amplitude transmittance of the 1-

D mask is 

 

 
1 2( ) ( ) exp cosh 2 rect( ).
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After we place the two mask in closed contact, we 

introduce a lateral displacement σ, where σ < Ω. Then, 

the overall amplitude transmittance of the two masks can 

be expressed as   

 

1 2Q( ; ) ( ) ( ) rect( )
2 2 2

exp 2 cosh cosh(2 ) rect( ).
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It is apparent from Eq. (2) that the overall amplitude 

transmittance is a real, positive, even function. In Fig. 2 
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we plot the result in Eq. (2) for a=0.02, and for several 

values of σ/Ω = 0, 0.1, 0.2, 0.3, 0.4 and 0.5.  

 

 
Fig. 2. Amplitude transmittance as a function of the spatial frequency μ, 

for several values of σ/Ω. 

 

 

From Eq. (2), and from Fig. 2, we claim that by laterally 

displacing the two masks, one can tune the damping 

factor of the apodizer, while preserving the hyperbolic 

profile. Next, we analyse the influence of this apodizer on 

the PSF side-lobes. 

 

 One can obtain the irradiance PSF, by taking the square 

modulus of the inverse Fourier transform, of Eq. (2). In 

mathematical terms, the irradiance PSF is 

   

2

2

; Q( ; ) exp 2 .q x i x d     




 
             (3) 

 

We employ conventional software tools for evaluating the 

fast Fourier transform in Eq. (3); and in this manner we 

obtain the irradiance PSF shown in Fig. 3. From the 

numerical results in Fig. 3, we claim the following. As 

one increases the lateral displacement (between the two 

grey level masks), the irradiance PSF has attenuated side-

lobes. At the same time, the main lobe of the PSF has a 

broader width. Furthermore, one can analyse the 

influence of the proposed masks, as follows. 

 

 

 
Fig. 3. Irradiance distributions associated to the PSF of the proposed 

mask, for several values of lateral displacement. 

 

 

First, we recognize that Eq. (2) can also be rewritten 

(using the procedure in the Appendix) as  
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    (4) 

 

For the sake of simplicity, we have omitted the rect(μ/Ω) 

function at both sides of Eq. (4). Next, we recognize that 

the first term in Eq. (4) is practically equal to unity for a = 

0.02, and for the values of σ/Ω that appear in Fig. 2.  

 

 
Fig. 4. The influence of the maximum number of terms N on S(μ; σ; N) 
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For understanding the role of the remaining terms in Eq. 

(4), we evaluate numerically the following expression 
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In Fig. 4 we show the numerical results that are obtained 

by evaluating Eq. (5), for a = 0.02 and for σ/Ω = 0.5, and 

by considering that the maximum number of terms is N = 

17, 34, 51, and 64. The series becomes stable for N = 74. 

From Fig. 4 we note that as one increases the number of 

terms, one starts to obtain the same profile as in Fig. 2. 

Furthermore, from Eq. (4), we note that the amplitude 

PSF can be written explicitly as 
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 (6) 

 

We recognize that the first term in equation 6 is almost 

equal to the sinc function. Hence, the remaining terms are 

responsible of reducing the side-lobes. 

 

In conclusion, we have proposed the use of two identical 

grey level masks for controlling continuously the 

damping factor of an optical apodizer; which has an 

exponentially decreasing hyperbolic profile. We have 

shown that by introducing a lateral displacement between 

the grey level masks, one can tune continuously the 

damping factor, while preserving the hyperbolic profile. 

We have presented analytical expressions that help to 

visualize the influence of our proposed apodizer for 

reducing the side-lobes of the PSF; while broadening the 

width of the main lobe.  
 

Appendix: We start by using the well-known generating 

function of the Bessel function 
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Then, we make the following change of variables 
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In Eq. (A2), as in the main text, i =√-1; μ is the spatial 

frequency variable; and Ω denotes the cut-off spatial 

frequency. By substituting Eq. (A2) in Eq. (A1) we obtain  
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Next, we recognize the following two relationships of the 

modified Bessel functions In(β) = Jn(iβ) = (i)n In(β); In(β) 

= I-n(β); see for example reference [14]. By taking into 

account these relationships, we obtain 
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The result in Eq. (A4) is used as Eq. (4), in the main text, 

with 
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        (A5) 
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