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Abstract—In this paper, the modeling of molecular reorientation in 

nematic liquid crystals is described. The theoretical model is based on 

Frank-Oseen elastic theory. By minimizing the equation on free energy, 

an equation describing molecular reorientation is obtained. To get a 

solution, two numerical methods (Successive Over-Relaxation and 

Multigrid) are employed and compared for the numerical results of 

director orientation and computation time. 

 

 

Nematic liquid crystals are unique materials commonly 

used, for instance, in many types of displays. These 

devices are based on strong nonlinear properties of liquid 

crystals. The most important mechanism is reorientational 

nonlinearity as the molecules react to the electric and 

magnetic fields and change their average orientation i.e. 

director n. To describe the optical properties of liquid 

crystals it is crucial to model molecular reorientation as it 

influences refractive indexes and absorption which 

strongly affect light propagation in such materials [1-3]. 

However, there are some analytical solutions of molecular 

reorientation for simplified cases [4-5]; in more complex 

configurations, numerical methods have to be employed. 

In this article, comparison of two numerical methods, used 

to solve the same equation based on elastic theory, is 

presented.   

Let us consider a cell of length L, filled with a liquid 

crystal. The director is defined as: 

 cos , sin .  n  

The molecules lie in the xy plane and the orientation is 

defined by an angle φ (see Fig. 1). On both sides of the 

cell, fixed anchoring conditions are applied: 

0 1(0) , ( ) .     L     

Substituting director n into Frank-Oseen equation on free 

energy: 
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and minimizing it, by using Euler-Lagrange equations and 

assuming single constant approximation, for one- 

dimensional case leads to the following equation [6-7]: 
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where: Ey - electric field distribution, K - average Frank 

elastic constant of the material, ∆ε – electric anisotropy, ε0 

- electric constant. 

 

 

Fig. 1. The analyzed setup (left) and coordinate system (right). 

To solve Eq.(2), two numerical methods were used. The 

first is the Successive Over-Relaxation method [8] and the 

second - multigrid method [9]. Both methods are 

compared for molecular reorientation and computation 

time.  

The Successive Over-Relaxation algorithm is based on 

the Gauss-Seidel scheme with the relaxation parameter 

ω=1.7 and constant resolution h=0.1µm. In the presented 

results, 30 000 of iterations were made. The SOR scheme 

can be written as: 
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where 
0 2| |

2K


  yE , n – denotes iteration.  

The multigrid method is implemented with the Full 

Approximation Scheme (FAS) in a two-grid form [10-11] 

which is a generalization of multigrid algorithms. The 

algorithm is based on calculations on a coarser grid 

(which is faster) and then corrections are interpolated and 

applied to the results. The two-grid method can be also 

described as a combination of a coarse grid method and 

that of relaxation. 

 Fig. 2 presents the numerical results of molecular 

reorientation under the influence of a constant electric 

field coming from the optical beam. The parameters used 

were as follows: ∆ε=0.49, K=5.5pN, which corresponds 

to the parameters of 6CHBT liquid crystal illuminated 

with a wide optical beam of a wavelength of 793nm at a 

temperature of 25
o
C. At the boundaries, Dirichlet 

anchoring conditions are assumed: 

o(0) ( ) 45 .   L  

As the analyzed issue is a boundary value problem, the 

solution depends on the boundary conditions. On the other 

hand, the maximum reorientation depends on electric field 

power as well as anisotropy and elastic constant. A cell of 

50µm in length is analyzed. 

 

 
Fig. 2. (a) Comparison of molecular orientation calculated with SOR 

and multigrid methods. (b) Difference in the results between molecular 

reorientation obtained with SOR and multigrid methods. 

 

According to Fig. 2b, it appears that differences between 

these two methods increase with position x. It is caused by 

the fact that both methods used to solve Eq. (3) are 

iterative. Even though the finite difference used to denote 

second derivative is symmetric, the calculations are made 

from x=0µm up to x=L=50µm so the error cumulates. In 

spite of that the molecular reorientation should be 

symmetric but in fact it is not. There are some slight 

differences which are of an order lower for the multigrid 

algorithm than for the SOR method. 

To compare the correctness of the results, the energy of 

both solutions was calculated. The lower the energy the 

more correct are the results. In a discrete form, the 

normalized energy in one dimension can be expressed as: 
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where i – index corresponding to the discretized x 

position.  

For the presented results, the energy of the system is as 

follows: Q=−2.9209arb.u. for the SOR method, and Q= 

−2.9285arb.u. for the multigrid method. It shows that 

using the multigrid method it is possible to obtain slightly 

better results. 

 The computation time of both methods was also 

analyzed. The time needed to obtain the solution of 

assumed energy is presented in Fig. 3 for both methods. 

For very low system sizes, the computation time is similar 

but for the SOR method, it quickly rises with the grid size. 

It shows the advantage of the multigrid method for large 

systems. 

 

 
Fig. 3. Comparison of computation time for both numerical methods as 

a function of grid size. 

 

Concluding, in the following article two iterative 

methods were used to solve the equations describing 

molecular reorientation of nematic liquid crystal. Both 

methods, Successive Over-Relaxation and multigrid, 

based on the Full Approximation Scheme in a two-grid 

form gave very similar results. The multigrid method 

proved to give slightly more symmetric results and better 

solutions when comparing the energy of the obtained 

results. Moreover, the multigrid method has lower 

computation times, especially for large systems. On the 

other hand, the SOR method, which produced good 

results, is straightforward and easier to use than the 

multigrid method, especially for more complicated 

nonlinear equations. To obtain good results in an easy 
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way, the SOR method can be used. However, when very 

accurate results are needed and the computation time is 

crucial, some effort has to be made to implement the 

multigrid method. 

This work was supported by the grant of the Faculty of 

Physics at the Warsaw University of Technology. 
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