Enhancing the sensitivity of interferometer sensing by slow light in photonic crystal waveguide

Authors

  • Qi Wang Northeastern University
  • Ya-nan Zhang Northeastern University
  • Bo Han Northeastern University
  • Lu Bai Northeastern University
  • Yong Zhao Northeastern University

DOI:

https://doi.org/10.4302/photon.%20lett.%20pl.v4i4.351

Abstract

A novel high sensitivity Mach-Zehnder interferometer (MZI) with slow light in photonic crystal waveguide (PCW) is proposed to enhance the sensitivity of fiber Brag grating (FBG) sensing system. The output intensity of MZI would be changed with the reflect center wavelength change of the FBG, which relates to the applied strain. By designing the PCW parameters, the measuring sensitivity of the applied strain can reach to 3.6 x 10-3rad/?? with a very high group index of 118. The active region is only 0.1 mm, which could be of great advantage in the use of the limited space.

Full Text: PDF

References
  1. Song, M. H., Yin, S. H., Ruffin, P. B., "Fiber Bragg grating strain sensor demodulation with quadrature sampling of a Mach-Zehnder interferometer", Applied Optics, 39(7), 1106-1111(2000). CrossRef
  2. Lee, S. M., Saini, S. S., Jeong, M. Y., "Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors", Photonics Technology Letters, 22(19): 1431-1433(2010). CrossRef
  3. Zhao, Y., Song, T. T., "Fiber Bragg grating current sensor based on birefringence effect", Microwave and Optical Technology Letters, 54(3): 822-826(2012). CrossRef
  4. Mihailov, S. J., "Fiber Bragg grating sensors for harsh environments", Sensors, 12(2), 1898-1918(2012). CrossRef
  5. Zhao, Y., Zhang, Y. N. and Wang, Q., "Research advances of photonic crystal gas and liquid sensors", Sensors and Actuators B: Chemical, 160(1), 1288-1297 (2011). CrossRef
  6. Chahal, M., Celler, G. K., Jaluria Y., "Thermo-optic characteristics and switching power limit of slow-light photonic crystal structures on a silicon-on-insulator platform", Optics Express, 20(4), 4225-4231(2012). CrossRef
  7. Baba, T., "Slow light in photonic crystals", Nature Photonics, 2(8), 465-473(2008). CrossRef
  8. Shen, C. Y., Zhong, C., "Novel temperature-insensitive fiber Bragg grating sensor for displacement measurement", Sensors and Actuators: A-Physical, 170(1-2), 51-54(2011). CrossRef
  9. http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands. DirectLink
  10. Guo, S. P., Albin, S., "Simple plane wave implementation for photonic crystal calculations", Optical Express, 11(2), 167-175 (2003). CrossRef
  11. Petrov, A. Y., Eich, M., "Zero dispersion at small group velocities in photonic crystal waveguides", Applied Physics Letters, 85(21), 4866-4868(2004). CrossRef
  12. Li, J., T. White, P., Faolain, L. O., "Systematic design of flat band slow light in photonic crystal waveguides", Optical Express, 16(9), 6227-6232(2008). CrossRef
  13. Hao, R., Cassan, E., Roux, X. L., Gao, D., Khanh, V. D., Vivien, Laurent., Delphine, M. M., Zhang, X. X., "Improvement of delay-bandwidth product in photonic crystal slow-light waveguides", Optics Express, 18(16), 16309-16319 (2010). CrossRef
  14. Engelen, R. J. P., Sugimoto, Y., Watanabe, Y., "The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides", Optics Express, 14(4), 1658-1672(2006). CrossRef

Downloads

Published

2012-12-31

How to Cite

[1]
Q. Wang, Y.- nan Zhang, B. Han, L. Bai, and Y. Zhao, “Enhancing the sensitivity of interferometer sensing by slow light in photonic crystal waveguide”, Photonics Lett. Pol., vol. 4, no. 4, pp. pp. 131–133, Dec. 2012.

Issue

Section

Articles