@article{Babicheva_Lavrinenko_2013, title={A plasmonic modulator based on metal-insulator-metal waveguide with barium titanate core}, volume={5}, url={https://photonics.pl/PLP/index.php/letters/article/view/5-21}, DOI={10.4302/photon. lett. pl.v5i2.401}, abstractNote={We design a plasmonic modulator which can be utilized as a compact active device in photonic integrated circuits. The active material, barium titanate (BaTiO<sub>3</sub>), is sandwiched between metal plates and changes its refractive index under applied voltage. Some degree of switching of ferroelectric domains from the in-plane to out-of-plane orientation provides the change of the refractive index, which can be exploited for effective light modulation. By numerical analysis we prove that the π phase change can be achieved with a 12…15 μm length device having propagation losses 0.05…0.2 dB/μm. <br /> <br /> Full Text: <a class="file" href="/PLP/index.php/letters/article/view/5-21/279" target="_parent">PDF</a> <br /> <br /> <strong>References</strong> <ol> <li>A.V. Zayats, I.I. Smolyaninov, and A.A. Maradudin, "Nano-optics of surface plasmon polaritons", Phys. Rep. 408, 131 (2005). <a class="file" href="http://dx.doi.org/10.1016/j.physrep.2004.11.001" target="_parent"> CrossRef </a> </li> <li>J.A. Schuller et al., "Plasmonics for extreme light concentration and manipulation", Nature Materials 9, 193 (2010). <a class="file" href="http://dx.doi.org/10.1038/nmat2630" target="_parent"> CrossRef </a> </li> <li>D.K. Gramotnev and S.I. Bozhevolnyi, "Plasmonics beyond the diffraction limit", Nat. Photon. 4, 83 (2010). <a class="file" href="http://dx.doi.org/10.1038/nphoton.2009.282" target="_parent"> CrossRef </a> </li> <li>K.F. MacDonald and N.I. Zheludev, "Active plasmonics: current status", Laser Photon. Rev. 4, 562–567 (2010). <a class="file" href="http://dx.doi.org/10.1002/lpor.200900035" target="_parent"> CrossRef </a> </li> <li>V.J. Sorger, N.D. Lanzillotti-Kimura, Ren-Min Ma and Xiang Zhang, "Ultra-compact silicon nanophotonic modulator with broadband response", Nanophotonics 1, 17 (2012). <a class="file" href="http://dx.doi.org/10.1515/nanoph-2012-0009" target="_parent"> CrossRef </a> </li> <li>H.M.G. Wassel et al., "Opportunities and Challenges of Using Plasmonic Components in Nanophotonic Architectures", IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2, 154-168 (2012). <a class="file" href="http://dx.doi.org/10.1109/JETCAS.2012.2193934" target="_parent"> CrossRef </a> </li> <li>W. Cai, J.S. White, and M.L. Brongersma, "Compact, High-Speed and Power-Efficient Electrooptic Plasmonic Modulators", Nano Letters 9, 4403 (2009). <a class="file" href="http://dx.doi.org/10.1021/nl902701b" target="_parent"> CrossRef </a> </li> <li>J.A. Dionne, K. Diest, L.A. Sweatlock, and H.A. Atwater, "PlasMOStor: A Metal−Oxide−Si Field Effect Plasmonic Modulator", Nano Lett. 9, 897 (2009). <a class="file" href="http://dx.doi.org/10.1021/nl803868k" target="_parent"> CrossRef </a> </li> <li>Wangshi Zhao and Zhaolin Lu, "Nanoplasmonic optical switch based on Ga-Si<sub>3</sub>N<sub>4</sub>-Ga waveguide", Optical Engineering 50, 074002 (2011). <a class="file" href="http://dx.doi.org/10.1117/1.3595868" target="_parent"> CrossRef </a> </li> <li>B.A. Kruger et al., "Design of electrically driven hybrid vanadium dioxide (VO<sub>2</sub>) plasmonic switches", Optics Express 20, 23598 (2012). <a class="file" href="http://dx.doi.org/10.1364/OE.20.023598" target="_parent"> CrossRef </a> </li> <li>A. Joushaghani et al., "Sub-volt broadband hybrid plasmonic-vanadium dioxide switches", Appl. Phys. Lett. 102, 061101 (2013). <a class="file" href="http://dx.doi.org/10.1063/1.4790834" target="_parent"> CrossRef </a> </li> <li>J.A. Dionne, L.A. Sweatlock, H.A. Atwater, and A. Polman, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization", Phys. Rev. B 73, 035407 (2006). <a class="file" href="http://dx.doi.org/10.1103/PhysRevB.73.035407" target="_parent"> CrossRef </a> </li> <li>Y. Kurokawa and H.T. Miyazaki, "Metal-insulator-metal plasmon nanocavities: Analysis of optical properties", Phys. Rev. B 75, 035411 (2007). <a class="file" href="http://dx.doi.org/10.1103/PhysRevB.75.035411" target="_parent"> CrossRef </a> </li> <li>Bozena Jaskorzynska, Yi Song, and Min Qiu, "Tradeoff between mode confinement, loss, and cross-talk, for dielectric and metal slot waveguides", Photonics Letters of Poland 1, 172 (2009). <a class="file" href="http://dx.doi.org/10.4302/plp.2009.4.10" target="_parent"> CrossRef </a> </li> <li>A.V. Krasavin and A.V. Zayats, "Photonic Signal Processing on Electronic Scales: Electro-Optical Field-Effect Nanoplasmonic Modulator", Physical Review Letters 109, 053901 (2012). <a class="file" href="http://dx.doi.org/10.1103/PhysRevLett.109.053901" target="_parent"> CrossRef </a> </li> <li>A. Emboras et al., "Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides", Appl. Phys. Lett. 101, 251117 (2012). <a class="file" href="http://dx.doi.org/10.1063/1.4772941" target="_parent"> CrossRef </a> </li> <li>A. Melikyan et al., "Surface plasmon polariton absorption modulator", Optics Express 19, 8855 (2011). <a class="file" href="http://dx.doi.org/10.1364/OE.19.008855" target="_parent"> CrossRef </a> </li> <li>V.E. Babicheva and A.V. Lavrinenko, "Surface plasmon polariton modulator with optimized active layer", Proc. SPIE 8424, 842413 (2012). <a class="file" href="http://dx.doi.org/10.1117/12.922376" target="_parent"> CrossRef </a> </li> <li>V.E. Babicheva and A.V. Lavrinenko, "Plasmonic modulator optimized by patterning of active layer and tuning permittivity", Opt. Commun. 285, 5500 (2012). <a class="file" href="http://dx.doi.org/10.1016/j.optcom.2012.07.117" target="_parent"> CrossRef </a> </li> <li>Zhaolin Lu, Wangshi Zhao, and Kaifeng Shi, "Ultracompact Electroabsorption Modulators Based on Tunable Epsilon-Near-Zero-Slot Waveguides", IEEE Photonics Journal 4, 735 (2012). <a class="file" href="http://dx.doi.org/10.1109/JPHOT.2012.2197742" target="_parent"> CrossRef </a> </li> <li>V.E. Babicheva, I.V. Kulkova, R. Malureanu, K. Yvind, and A.V. Lavrinenko, "Plasmonic modulator based on gain-assisted metal–semiconductor–metal waveguide", Photonics and Nanostructures-Fundamentals and Applications 10, 389 (2012). <a class="file" href="http://dx.doi.org/10.1016/j.photonics.2012.05.008" target="_parent"> CrossRef </a> </li> <li>V.E. Babicheva, R. Malureanu, and A.V. Lavrinenko, "Plasmonic modulator based on thin metal-semiconductor-metal waveguide with gain core", Proc. SPIE 8627, 86270X (2013). <a class="file" href="http://dx.doi.org/10.1117/12.2002573" target="_parent"> CrossRef </a> </li> <li>V.E. Babicheva, R. Malureanu, and A.V. Lavrinenko, "Plasmonic finite-thickness metal-semiconductor-metal waveguide as ultra-compact modulator", <a class="file" href="http://arxiv.org/abs/1301.5603" target="_parent"> CrossRef </a> </li> <li>A. Petraru, J. Schubert, M. Schmid, C. Buchal, "Ferroelectric BaTiO<sub>3</sub> thin-film optical waveguide modulators", Appl. Phys. Lett. 81, 1375 (2002). <a class="file" href="http://dx.doi.org/10.1063/1.1498151" target="_parent"> CrossRef </a> </li> <li>P. Tang, D.J. Towner, T. Hamano, A.L. Meier, B.W. Wessels, "Electrooptic modulation up to 40 GHz in a barium titanate thin film waveguide modulator", Opt. Express 12, 5962 (2004). <a class="file" href="http://dx.doi.org/10.1364/OPEX.12.005962" target="_parent"> CrossRef </a> </li> <li>P. Tang, D.J. Towner, A.L. Meier, B.W. Wessels, "Low-voltage, polarization-insensitive, electro-optic modulator based on a polydomain barium titanate thin film", Appl. Phys. Lett. 85, 4615 (2004). <a class="file" href="http://dx.doi.org/10.1063/1.1819515" target="_parent"> CrossRef </a> </li> <li>P. Tang, A.L. Meier, D.J. Towner, and B.W. Wessels, "BaTiO<sub>3</sub> thin-film waveguide modulator with a low voltage-length product at near-infrared wavelengths of 0.98 and 1.55 µm", Optics Letters 30, 254 (2005). <a class="file" href="http://dx.doi.org/10.1364/OL.30.000254" target="_parent"> CrossRef </a> </li> <li>I.D. Kim, Y. Avrahami, H.L. Tuller, Y.B. Park, M.J. Dicken, H.A. Atwater, "Study of orientation effect on nanoscale polarization in BaTiO<sub>3</sub> thin films using piezoresponse force microscopy", Appl. Phys. Lett. 86, 192907 (2005). <a class="file" href="http://dx.doi.org/10.1063/1.1923173" target="_parent"> CrossRef </a> </li> <li>M.J. Dicken, K. Diest, Y.B. Park, H.A. Atwater, "Growth and optical property characterization of textured barium titanate thin films for photonic applications", J. Cryst. Growth 300, 330 (2007). <a class="file" href="http://dx.doi.org/10.1016/j.jcrysgro.2006.11.313" target="_parent"> CrossRef </a> </li> <li>M.J. Dicken et al., "Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers", Nano Lett. 8, 4048 (2008). <a class="file" href="http://dx.doi.org/10.1021/nl802981q" target="_parent"> CrossRef </a> </li> <li>P.B. Johnson and R.W. Christy, "Optical Constants of the Noble Metals", Phys. Rev. B 6, 4370 (1972). <a class="file" href="http://dx.doi.org/10.1103/PhysRevB.6.4370" target="_parent"> CrossRef </a> </li> <li>A.D. Rakić, "Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum", Appl. Opt. 34, 4755 (1995). <a class="file" href="http://dx.doi.org/10.1364/AO.34.004755" target="_parent"> CrossRef </a> </li> <li>I.D. Rukhlenko, M. Premaratne, and G.P. Agrawal, "Guided plasmonic modes of anisotropic slot waveguides", Nanotechnology 23, 444006 (2012). <a class="file" href="http://dx.doi.org/10.1088/0957-4484/23/44/444006" target="_parent"> CrossRef </a> </li> <li>Shiyang Zhu, G. Q. Lo, and D. L. Kwong, "Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators", Optics Express 18, 27802 (2010). <a class="file" href="http://dx.doi.org/10.1364/OE.18.027802" target="_parent"> CrossRef </a> </li> <li>Shiyang Zhu, G.Q. Lo, and D.L. Kwong, "Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides", Appl. Phys. Lett. 99, 151114 (2011). <a class="file" href="http://dx.doi.org/10.1063/1.3653240" target="_parent"> CrossRef </a> </li> <li>R. Thomas, Z. Ikonic, R.W. Kelsall, Photonics and Nanostructures – Fundamentals and Applications 10, 183 (2012). <a class="file" href="/PLP/index.php/letters/editor/viewMetadata/ " target="_parent"> CrossRef </a> </li> </ol>}, number={2}, journal={Photonics Letters of Poland}, author={Babicheva, Viktoriia E. and Lavrinenko, Andrei V.}, year={2013}, month={Jun.}, pages={pp. 57–59} }