@article{Krauze_Kujawińska_2013, title={Limited-angle tomography applied to biological objects}, volume={5}, url={https://photonics.pl/PLP/index.php/letters/article/view/5-53}, DOI={10.4302/photon. lett. pl.v5i4.461}, abstractNote={Optical limited-angle tomography is strongly required in biological applications, as often there is an access to projections gathered from a small angle range. Choosing a reconstruction algorithm among many available is always a tradeoff between speed of calculation and quality of reconstruction. In this paper we present the studies how the a priori information about object’s geometry influences efficiency of the Data Replenishment Algorithm. The analysis is based on tomographic reconstruction of real biological cell of human malignant lymphoma. <br /> <br /> Full Text: <a class="file" href="/PLP/index.php/letters/article/view/5-53/313" target="_parent">PDF</a> <br /> <br /> <strong>References</strong> <ol> <li>S. Kou, C. Sheppard, "Image formation in holographic tomography", Opt. Lett. 33, 2362 (2008). <a class="file" href="http://dx.doi.org/10.1364/OL.33.002362" target="_parent"> CrossRef </a> </li> <li>J. Hsieh, Computed Tomography Principles, Design, Artifacts, and Recent Advances (Wiley 2009). <a class="file" target="_parent"> </a> </li> <li>S. Isikman et al., "Lens-free optical tomographic microscope with a large imaging volume on a chip", P. Natl. Acad. Sci. USA 108, 7296 (2011). <a class="file" href="http://dx.doi.org/10.1073/pnas.1015638108" target="_parent"> CrossRef </a> </li> <li>S. Vertu, E. Maeda, J. Flügge, J. Delaunay, O. Haeberlé, "Comparison of resolution in tomographic diffractive microscopy using combinations of sample rotation and illumination rotation", Proc. SPIE 7904 (2011). <a class="file" href="http://dx.doi.org/10.1117/12.874446" target="_parent"> CrossRef </a> </li> <li>A. Likhachov, "Projection data replenishment algorithm for limited angle tomography", Optoelectron. Instrum. Data Process. 45, 55 (2009). <a class="file" href="http://link.springer.com/article/10.1134/S8756699009010099" target="_parent"> DirectLink </a> </li> <li>R. Gordon, "A tutorial on art (algebraic reconstruction techniques)", IEEE T. Nucl. Sci. 21, 78 (1974). <a class="file" href="http://dx.doi.org/10.1109/TNS.1974.6499238" target="_parent"> CrossRef </a> </li> <li>A. Andersen, A. Kak, "Simultaneous Algebraic Reconstruction Technique (SART): A Superior Implementation of the Art Algorithm", Ultrasonic Imaging 6, 81 (1984). <a class="file" href="http://dx.doi.org/10.1177/016173468400600107" target="_parent"> CrossRef </a> </li> <li>D. Verhoeven, "Limited-data computed tomography algorithms for the physical sciences", Appl. Optics 32, 3736 (1993). <a class="file" href="http://dx.doi.org/10.1364/AO.32.003736" target="_parent"> CrossRef </a> </li> <li>J. Fessler, B. Sutton, "Nonuniform fast Fourier transforms using min-max interpolation", IEEE T. Signal Proces. 51, 560 (2003). <a class="file" href="http://dx.doi.org/10.1109/TSP.2002.807005" target="_parent"> CrossRef </a> </li> <li>Z. Wang, A. Bovik, "A universal image quality index", IEEE Signal Proc. Let. 9, 81 (2002). <a class="file" href="http://dx.doi.org/10.1109/97.995823" target="_parent"> CrossRef </a> </li> <li>M. Kujawińska et al., "Problems and Solutions in Tomographic Analysis of Phase Biological Objects", Fringe 2013, 671 (2013) <a class="file" href="http://dx.doi.org/10.1007/978-3-642-36359-7_124" target="_parent"> CrossRef </a> </li> </ol>}, number={4}, journal={Photonics Letters of Poland}, author={Krauze, Wojciech and Kujawińska, Małgorzata}, year={2013}, month={Dec.}, pages={pp. 149–151} }