TY - JOUR AU - Saris, Nur Najahatul Huda AU - Mikami, Osamu AU - Hamzah, Azura AU - Ambran, Sumiaty AU - Fujikawa, Chiemi PY - 2018/03/31 Y2 - 2024/03/29 TI - A V-Shape Optical Pin Interface for Board Level Optical Interconnect JF - Photonics Letters of Poland JA - Photonics Lett. Pol. VL - 10 IS - 1 SE - Articles DO - 10.4302/plp.v10i1.786 UR - https://photonics.pl/PLP/index.php/letters/article/view/10-8 SP - 20-22 AB - This paper introduces a new interface of an optical pin for Printed Circuit Boards (PCBs), the V-shape cut type which is an innovation from the 90-degree cut type optical pin. The effectiveness is determined by optical characteristics through OptiCAD and by experiment. The simulation used a model of ray tracing analysis which is a one to two (split) connection function model. For the experiment, a Polymer Optical Fibre (POF) V-shape optical pin has been fabricated. It was found that the V-shaped optical pin has a multi-branched function and is applicable to optical interconnection. <br /> <br /> Full Text: <a class="file" href="/PLP/index.php/letters/article/view/10-8/524" target="_parent">PDF</a> <br /> <br /> <strong>References</strong><ol><li>Mikami, O., et al. Optical pin interface for 90-deg optical path conversion coupling to Printed Wiring Board. in Region 10 Conference (TENCON), 2016 IEEE. 2016. IEEE. <a class="file" href="https://doi.org/10.1109/TENCON.2016.7848434" target="_parent"> CrossRef </a></li><li>DeCusatis, C., Data center architectures, in Optical Interconnects for Data Centers. 2017, Elsevier. p. 3-41. <a class="file" href="https://doi.org/10.1016/B978-0-08-100512-5.00001-2" target="_parent"> CrossRef </a></li><li>Duranton, M., D. Dutoit, and S. Menezo, Key requirements for optical interconnects within data centers, in Optical Interconnects for Data Centers. 2017, Elsevier. p. 75-94. <a class="file" href="https://doi.org/10.1016/B978-0-08-100512-5.00003-6" target="_parent"> CrossRef </a></li><li>ITOH, Y., et al., Optical Coupling Characteristics of Optical Pin with 45° Micro Mirror for Optical Surface Mount Technology. Journal of The Japan Institute of Electronics Packaging, 2001. 4(6): p. 497-503. <a class="file" href="https://doi.org/10.5104/jiep.4.497" target="_parent"> CrossRef </a></li><li>Uchida, T. and O. Mikami, Optical surface mount technology. IEICE Transactions on Electronics, 1997. 80(1): p. 81-87. <a class="file" href="https://doi.org/10.1143/JJAP.31.1652" target="_parent"> CrossRef </a></li><li>Papakonstantinou, I., et al., Low-cost, precision, self-alignment technique for coupling laser and photodiode arrays to polymer waveguide arrays on multilayer PCBs. IEEE Transactions on Advanced Packaging, 2008. 31(3): p. 502-511. <a class="file" href="https://doi.org/10.1109/TADVP.2008.924243" target="_parent"> CrossRef </a></li><li>Nakama, K., et al., Optical connection device. 2006, Google Patents. <a class="file" href="https://patents.google.com/patent/JPH04110815A/en" target="_parent"> DirectLink </a></li><li>Ramaswami, R., K. Sivarajan, and G. Sasaki, Optical networks: a practical perspective. 2009: Morgan Kaufmann. <a class="file" href="https://www.elsevier.com/books/optical-networks/ramaswami/978-0-12-374092-2" target="_parent"> DirectLink </a></li><li>Tong, X.C., Advanced materials for integrated optical waveguides. 2014: Springer. <a class="file" href="https://doi.org/10.1007/978-3-319-01550-7" target="_parent"> CrossRef </a></li></ol> ER -