https://photonics.pl/PLP/index.php/letters/issue/feedPhotonics Letters of Poland2023-07-02T23:20:45+02:00Photonics Letters of Polandletters@photonics.plOpen Journal Systems<p>PSP Photonics Letters of Poland (ISSN 2080-2242) is a new peer-reviewed web-based, open-access journal published by the <a>Photonics Society of Poland</a> and co-sponsored by <a href="http://spie.org">SPIE</a>. Journal is also supported by the Ministry of Science and Higher Education of Poland in the frame of the project 699/P-DUN/2017.</p>https://photonics.pl/PLP/index.php/letters/article/view/15-6Influence of a Polyimide Coating Layer on Losses of Fabricated SOI Slot Waveguides2023-06-18T09:47:15+02:00Maithem Naeem Salihmaythem.shukur@uokufa.edu.iqAlan Mickelsonalan.mickelson@colorado.edu<p>We demonstrate experimentally and simultaneously the impact of the Polyimide (PI) coating layer on the coupling and propagation losses of the fabricated SOI slot waveguides at 1550 nm operation wavelength and TE polarization. <br /><br />Full Text: <a href="http://photonics.pl/PLP/index.php/letters/article/view/15-6/830" target="_parent">PDF</a> <br /><br /><strong>References</strong></p> <ol> <li>P. Dong, Y.K. Chen, G.H. Duan, and D.T. Neilson, "Silicon photonic devices and integrated circuits," Nanophot, 3, 215 (2014). <a class="file" href="https://doi.org/10.1515/nanoph-2013-0023" target="_parent"> CrossRef </a></li> <li>Q. Xu, V.R. Almeida, R.R. Panepucci, M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett., 29, 1626 (2004). <a class="file" href="https://doi.org/10.1364/OL.29.001626" target="_parent"> CrossRef </a></li> <li>V.R. Almeida, Q. Xu, C.A. Barrios, M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett., 29, 1209 (2004). <a class="file" href="https://doi.org/10.1364/OL.29.001209" target="_parent"> CrossRef </a></li> <li>A. Mickelson, "Silicon photonic slot guides for nonlinear optics," 2013 Int. Conf. Microw. Photonics, ICMAP 2013, (2013). <a class="file" href="https://doi.org/10.1109/ICMAP.2013.6733451" target="_parent"> CrossRef </a></li> <li>A. Martínez et al., "Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths," Nano Lett., 10, 1506 (2010). <a class="file" href="https://doi.org/10.1021/nl9041017" target="_parent"> CrossRef </a></li> <li>C. Koos et al., "All-optical high-speed signal processing with silicon-organic hybrid slot waveguides," Nat. Photonics., 3, 216 (2009). <a class="file" href="https://doi.org/10.1038/nphoton.2009.25" target="_parent"> CrossRef </a></li> <li>Y. Li, K. Cui, X. Feng, Y. Huang, F. Liu, and W. Zhang, "Ultralow propagation loss slot-waveguide in high absorption active material," IEEE Photonics J., 6, 3 (2014). <a class="file" href="https://doi.org/10.1109/JPHOT.2014.2320746" target="_parent"> CrossRef </a></li> <li>Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, S. He, "Ultracompact low-loss coupler between strip and slot waveguides," Opt. Lett., 34, 1498 (2009). <a class="file" href="https://doi.org/10.1364/OL.34.001498" target="_parent"> CrossRef </a></li> </ol>2023-07-02T00:00:00+02:00Copyright (c) 2023 Photonics Letters of Polandhttps://photonics.pl/PLP/index.php/letters/article/view/15-7Theoretical analysis of a high-performance surface plasmon resonance biosensor using BlueP/WS2 over Cu-Pt bimetallic layer 2023-06-18T10:16:49+02:00Muthumanicam Myilsamymuthuroots@gmail.comPrabhakar Cecil Lordwindrlordwin@veltech.edu.inAlagu Vibishaalaguvibisha@gmail.comSuresh Ponnandrpsuresh@veltech.edu.inJaroszewicz Zbigniewmmtzjaroszewicz@post.plRajesh Karupiya Balasundaramrajeskb@gmail.com<p>The present theoretical study exhibits the possibility of achieving extremely high sensitive surface plasmon resonance based biosensor comprising of Cu-Pt bimetallic layer and BlueP/WS2 hybrid nanostructure for angular interrogation method. Based of Transfer matrix method thickness of Cu and Pt as well as the number of BlueP/WS2 layer is optimized to obtain the best possible sensitivity and FOM. The well optimized Cu-Pt-BlueP/WS2 hybridstructure is found to generate sensitivity as high as 502°/RIU with FOM as 128.7RIU-1 such sensor is highly useful for detecting biomolecules. <br /><br />Full Text: <a href="http://photonics.pl/PLP/index.php/letters/article/view/15-7/831" target="_parent">PDF</a> <br /><br /><strong>References</strong></p> <ol> <li>A.H.M. Almawgani, M.G. Daher, S.A. Taya, M. Mashagbeh, I. Colak. "Optical Detection of Fat Concentration in Milk Using MXene-Based Surface Plasmon Resonance Structure", Biosensors 12, 535 (2022). <a class="file" href="https://doi.org/10.3390/bios12070535" target="_parent"> CrossRef </a></li> <li>E. Kretschmann, H. Raether, "Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light", Z. Naturf. a 23, 2135 (1968). <a class="file" href="https://doi.org/10.1515/zna-1968-1247" target="_parent"> CrossRef </a></li> <li>M.G. Daher, Y. Trabelsi, Y.K. Prajapati, A. Panda, N.M. Ahmed, A.N.Z. Rashed., "Highly sensitive detection of infected red blood cells (IRBCs) with plasmodium falciparum using surface plasmon resonance (SPR) nanostructure", Opt. Quantum Electron. 55, 199 (2023). <a class="file" href="https://doi.org/10.1007/s11082-022-04466-1" target="_parent"> CrossRef </a></li> <li>A.H.M. Almawgani, M.G. Daher, S.A. Taya, M.M. Olaimat, A.R.H. Alhawari, I. Colak., "Detection of Blood Plasma Concentration Theoretically Using SPR-Based Biosensor Employing Black Phosphor Layers and Different Metals", Plasmonics 17,1751 (2022). <a class="file" href="https://doi.org/10.1007/s11468-022-01662-3" target="_parent"> CrossRef </a></li> <li>Y. Saad, M. Selmi, M.H. Gazzah, A. Bajahzar, H. Belmabrouk, "Performance enhancement of a copper-based optical fiber SPR sensor by the addition of an oxide layer", Optik 190, 1 (2019). <a class="file" href="https://doi.org/10.1016/j.ijleo.2019.05.089" target="_parent"> CrossRef </a></li> <li>N.K. Sharma, S. Shukla, V. Sajal, "Surface plasmon resonance based fiber optic sensor using an additional layer of platinum: A theoretical study", Optik 133, 43 (2017). <a class="file" href="https://doi.org/10.1016/j.ijleo.2017.01.004" target="_parent"> CrossRef </a></li> <li>S. Shukla, M. Rani, N.K. Sharma, V. Sajal, "Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor utilizing platinum layer", Optik 126, 4636 (2015). <a class="file" href="https://doi.org/10.1016/j.ijleo.2015.08.071" target="_parent"> CrossRef </a></li> <li>S. Singh, A.K. Sharma, P. Lohia, D.K. Dwivedi, "Theoretical analysis of sensitivity enhancement of surface plasmon resonance biosensor with zinc oxide and blue phosphorus/MoS<sub>2</sub> heterostructure", Optik 244, 167618 (2021). <a class="file" href="https://doi.org/10.1016/j.ijleo.2021.167618" target="_parent"> CrossRef </a></li> <li>N. Liu, S. Wang, Q. Cheng, B. Pang, J. Lv, "High Sensitivity in Ni-Based SPR Sensor of Blue Phosphorene/Transition Metal Dichalcogenides Hybrid Nanostructure", Plasmonics 16, 1567 (2021). <a class="file" href="https://doi.org/10.1007/s11468-021-01421-w" target="_parent"> CrossRef </a></li> <li>S. Shivangani, M.F. Alotaibi, Y. Al-Hadeethi, P. Lohia, S. Singh, D.K. Dwivedi, A. Umar, H.M. Alzayed, H. Algadi, S. Baskoutas, "Numerical Study to Enhance the Sensitivity of a Surface Plasmon Resonance Sensor with BlueP/WS2-Covered Al<sub>2</sub>O<sub>3</sub>-Nickel Nanofilms", Nanomater. Basel 12, 2205 (2022). <a class="file" href="https://doi.org/10.3390/nano12132205" target="_parent"> CrossRef </a></li> <li>M. Yamamoto, "Surface Plasmon Resonance (SPR) Theory: Tutorial", Review of Polarography (JPN) 48, 209 (2002). <a class="file" href="https://doi.org/10.5189/revpolarography.48.209" target="_parent"> CrossRef </a></li> <li>P.K. Maharana, T. Srivastava, R. Jha, "Low index dielectric mediated surface plasmon resonance sensor based on graphene for near infrared measurements", J. Phys. D: Appl. Phys. 47, 385102 (2014). <a class="file" href="https://doi.org/10.1088/0022-3727/47/38/385102" target="_parent"> CrossRef </a></li> <li>S. Pal, N. Pal, Y.K. Prajapati, J.P. Saini, "Sensitivity Analysis of Surface Plasmon Resonance Biosensor Based on Heterostructure of 2D BlueP/MoS<sub>2</sub> and MXene", John Wiley & Sons, Inc. 103 (2020). <a class="file" href="https://doi.org/10.1002/9781119655190.ch5" target="_parent"> CrossRef </a></li> <li>S. Singh, A.K. Sharma, P. Lohia, D.K. Dwivedi, "Sensitivity enhancement of SPR biosensor employing heterostructure blue phosphorus/MoS<sub>2</sub> and silicon layer", Emerg. Mater. Res. 11, 239 (2022). <a class="file" href="https://doi.org/10.1680/jemmr.22.00009" target="_parent"> CrossRef </a></li> <li>R. Kumar, S. Pal, N. Pal, V. Mishra, Y.K. Prajapati, "High-performance bimetallic surface plasmon resonance biochemical sensor using a black phosphorus–MXene hybrid structure", Appl. Phys. A 127, 1 (2021). <a class="file" href="https://doi.org/10.1007/s00339-021-04408-w" target="_parent"> CrossRef </a></li> <li>M. Setareh, H. Kaatuzian, "Sensitivity enhancement of a surface plasmon resonance sensor using Blue Phosphorene/MoS<sub>2</sub> hetero-structure and barium titanate", Superlattices Microstruct. 153, 106867 (2021). <a class="file" href="https://doi.org/10.1016/j.spmi.2021.106867" target="_parent"> CrossRef </a></li> <li>S. Wang, N. Liu, Q. Cheng, B. Pang, J. Lv, "Surface Plasmon Resonance on the Antimonene–Fe<sub>2</sub>O<sub>3</sub>–Copper Layer for Optical Attenuated Total Reflection Spectroscopic Application", Plasmonics 16, 559 (2021). <a class="file" href="https://doi.org/10.1007/s11468-020-01309-1" target="_parent"> CrossRef </a></li> </ol> <p> </p>2023-07-02T00:00:00+02:00Copyright (c) 2023 Photonics Letters of Polandhttps://photonics.pl/PLP/index.php/letters/article/view/15-8Examination of thyme leaves grown under different spectra2023-05-26T09:48:36+02:00Adam Mazikowskiadamazik@eti.pg.edu.plMateusz Feldzensztajnmf@2ev.pl<p>Nowadays artificial light is often used in horticulture. Proper light composition may have significant impact on plant properties, important from the consumer's point of view. Based on experimental cultivation of thyme, examination of thyme leaves grown under different spectra was performed. Transmissive spectra, colorimetric properties, dry mass yield as well as biometrical properties (shape of leaves) were determined. Attention to the issues of energy efficacy of light sources was also paid. <br /><br />Full Text: <a href="http://photonics.pl/PLP/index.php/letters/article/view/15-8/832" target="_parent">PDF</a> <br /><br /><strong>References</strong></p> <ol> <li>D.L. DiLaura, K.W. Houser, R.G. Mistrick, G.R. Steffy, The lighting handbook, Illuminating Engineering Society, 2011. <a class="file" href="https://www.worldcat.org/title/lighting-handbook-reference-and-application/oclc/1103829275?referer=di&ht=edition" target="_parent"> DirectLink </a></li> <li>CREE Inc, Cree® 2835 LEDs Product family datasheet, (accessed 19 february 2023). <a class="file" href="file:///D:/Pliki%20PSP/Photonics%20Letters/Numer%2015-2/1219.html" target="_parent"> CrossRef </a></li> <li><a class="file" href="https://cree-led.com/media/documents/data-sheet-JSeries-2835-3v.pdf" target="_parent"> DirectLink </a></li> <li>M. Gilewski, "The role of light in the plants world", Phot. Lett.Pol., 11, 115 (2019). <a class="file" href="https://doi.org/10.4302/plp.v11i4.965" target="_parent"> CrossRef </a></li> <li>J. Yan, H. Liu, W. Zhao, Y. Su, "Photon flux calibration of LED in horticulture lighting", Proc. SPIE 12319(2022). <a class="file" href="https://doi.org/10.1117/12.2642847" target="_parent"> CrossRef </a></li> <li>B. Purabi, V.K. Venugopalan, R. Nath, P.K. Chakraborty, A. Gaber, W.F. Alsanie, B.M. Raafat, A. Hossain. 2022. "Seed Priming and Foliar Application of Nutrients Influence the Productivity of Relay Grass Pea (Lathyrus sativus L.) through Accelerating the Photosynthetically Active Radiation (PAR) Use Efficiency" Agronomy 12, 1125 (2022). <a class="file" href="https://doi.org/10.3390/agronomy12051125" target="_parent"> CrossRef </a></li> <li>T. Hegemann, J. Balasus, Q. Trinh, A. Herzog, T. Khanh, "Using spectral sensors to determine photosynthetic photon flux density in daylight - A theoretical approach". Light Res. Technol. 54, 429 (2022). <a class="file" href="https://doi.org/10.1177/14771535221077881" target="_parent"> CrossRef </a></li> <li>R.J. Ritchie, "Modelling photosynthetic photon flux density and maximum potential gross photosynthesis", Photosynthetica 48, 596 (2010). <a class="file" href="https://doi.org/10.1007/s11099-010-0077-5" target="_parent"> CrossRef </a></li> <li>D. Kulpa, A. Wesolowska, P. Jadczak, "Micropropagation and Composition of Essentials Oils in Garden Thyme (Thymus vulgaris L.)" Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46, 525 (2018). <a class="file" href="https://doi.org/10.15835/nbha46211020" target="_parent"> CrossRef </a></li> <li>V. R. Affonso, H.R. Bizzo, C.L.S. Lage, A. Sato, "Influence of Growth Regulators in Biomass Production and Volatile Profile of in Vitro Plantlets of Thymus vulgaris L", J. Agric. Food Chem., 57, 6392 (2009) <a class="file" href="https://doi.org/10.1021/jf900816c" target="_parent"> CrossRef </a></li> <li>W. Letchamo ,A. Gosselin, "Transpiration, essential oil glands, epicuticular wax and morphology of Thymus vulgaris are influenced by light intensity and water supply", J. Hortic. Sci, 71 (1996). <a class="file" href="https://doi.org/10.1080/14620316.1996.11515388" target="_parent"> CrossRef </a></li> <li>M. Feldzensztajn,, P. Wierzba, A. Mazikowski, "Examination of Spectral Properties of Medicinal Plant Leaves Grown in Different Lighting Conditions Based on Mint Cultivation", Sensors, 21, 4122 (2021) <a class="file" href="https://doi.org/10.3390/s21124122" target="_parent"> CrossRef </a></li> <li>H. Spalholz, P. Perkins-Veazie, R. Hernández, "Impact of sun-simulated white light and varied blue:red spectrums on the growth, morphology, development, and phytochemical content of green- and red-leaf lettuce at different growth stages". Sci. Hortic., 264, 109195 (2020). <a class="file" href="https://doi.org/10.1016/j.scienta.2020.109195" target="_parent"> CrossRef </a></li> <li>J.M. Tabbert, H. Schulz, A. Krähmer., "Increased Plant Quality, Greenhouse Productivity and Energy Efficiency with Broad-Spectrum LED Systems: A Case Study for Thyme (Thymus vulgaris L.)", Plants 10, 960 (2021). <a class="file" href="https://doi.org/10.3390/plants10050960" target="_parent"> CrossRef </a></li> </ol>2023-07-02T00:00:00+02:00Copyright (c) 2023 Photonics Letters of Polandhttps://photonics.pl/PLP/index.php/letters/article/view/15-9Temperature dependence of optical fiber current sensor with external conversion2023-06-18T09:24:17+02:00Kamil BarczakKbarczak@polsl.plJanusz Juraszekjjuraszek@ath.bielsko.pl<p>The paper presents the research of a optical fiber current sensor with external conversion (OFCS-EC) as a function of temperature. The sensor was developed in the Department of Optoelectronics. The sensor was tested in the temperature range from 23 °C – 80 °C. For each of the temperatures, the sensitivity was determined on the basis of a sinusoidal waveform. Thus, the linearity of the transfer characteristics was checked. The main purpose of the experiment was to check the limits of sensitivity changes in changing thermal conditions and whether the sensor meets the standards used in the power industry. <br /><br />Full Text: <a href="http://photonics.pl/PLP/index.php/letters/article/view/15-9/833" target="_parent">PDF</a> <br /><br /><strong>References</strong></p> <ol> <li>M.J. Weber, "CRC Handbook of Laser Science and Technology. Supplement 2: Optical Materials", CRC Press, Boca Raton, FL, USA (1995). <a class="file" href="file:///D:/Pliki%20PSP/Photonics%20Letters/Numer%2015-2/1222.html" target="_parent"> CrossRef </a></li> <li>S. Ju, Y. Lee, Y.T. Ryu, S.G. Kang, J. Kim, P.R. Watekar, B.H. Kim, Y. Lee, Y.H. An, C.J. Kim, W.T. Han, "Temperature Dependence of Faraday Rotation of Glass Optical Fibers Doped with Quantum Dots of CdSe and CdMnTe", Phys. Status Solidi A, 216: 1800549 (2019). <a class="file" href="https://doi.org/10.1002/pssa.201800549" target="_parent"> CrossRef </a></li> <li>E. Lage, L. Beran, A.U. Quindeau, L. Ohnoutek, M. Kucera, R. Antos, S. R. Sani, G.F. Dionne, M. Veis, C.A. Ross; Temperature-dependent Faraday rotation and magnetization reorientation in cerium-substituted yttrium iron garnet thin films. APL Mater. 5, 036104 (2017). <a class="file" href="https://doi.org/10.1063/1.4976817" target="_parent"> CrossRef </a></li> <li>S. Ju, J. Kim, K. Linganna, P.R. Watekar, S.G. Kang, B.H. Kim, S. Boo, Y. Lee, Y.H. An, C.J. Kim, et al. "Temperature and Vibration Dependence of the Faraday Effect of Gd<sub>2</sub>O<sub>3</sub> NPs-Doped Alumino-Silicate Glass Optical Fiber". Sensors, 18, 988 (2018). <a class="file" href="https://doi.org/10.3390/s18040988" target="_parent"> CrossRef </a></li> <li>A. Jeffrey, D. and R.M. Bunch, "Temperature dependence of the Faraday rotation of Hoya FR-5 glass," Appl. Opt. 23, 633 (1984). <a class="file" href="https://doi.org/10.1364/AO.23.000633" target="_parent"> CrossRef </a></li> <li>K. Barczak, J. Juraszek, "Optoelectronic system for detecting short-circuits in low voltage networks", Photon. Lett. Pol, 14, 37 (2022). <a class="file" href="https://doi.org/10.4302/plp.v14i2.1158" target="_parent"> CrossRef </a></li> <li>K. Barczak, K. Mazniewski, "Optical fiber current sensor with external conversion for measurements of low AC electric currents", Proc. SPIE, 10455 (2017). <a class="file" href="https://doi.org/10.1117/12.2282805" target="_parent"> CrossRef </a></li> </ol>2023-07-02T00:00:00+02:00Copyright (c) 2023 Photonics Letters of Polandhttps://photonics.pl/PLP/index.php/letters/article/view/15-10Optics and Photonics as a strong and resilient field for a successful career development2023-06-23T06:26:44+02:00Bernard Kressbernard.kress@gmail.com<p>When compared to other enabling technology fields such as Electronic Engineering or Computer Science, Optics and Photonics stands out to be by far the oldest field of research, and yet the one still standing today at the forefront of research, consumer electronics, transformation industry, communication, health, biotech and many more. From solving the mysteries of our universe to the development of the latest smart phones and the fastest internet lines, the field of Optics and Photonics has proven over and over to be at the cornerstone for everything we take for granted today. This field has been associated with many successive market booms, and sometimes also bubbles, but the underlying technology build by its exceptional engineers never gets wasted or lost, providing valuable key building blocks to fuel the “next big thing” <br /><br />Full Text: <a href="http://photonics.pl/PLP/index.php/letters/article/view/15-10/834" target="_parent">PDF</a> <br /><br /><strong>References</strong></p> <ol> <li>https://money.cnn.com/2001/12/18/technology/q_yearend_telecom <a class="file" href="https://money.cnn.com/2001/12/18/technology/q_yearend_telecom" target="_parent"> DirecLink </a></li> <li>https://money.cnn.com/2010/11/09/technology/jdsu_qualcomm/index.htm <a class="file" href="https://money.cnn.com/2010/11/09/technology/jdsu_qualcomm/index.htm" target="_parent"> DirectLink </a></li> <li>https://www.forbes.com/global/1999/1129/098_01.html?sh=290252831d0c <a class="file" href="https://www.forbes.com/global/1999/1129/098_01.html?sh=290252831d0c" target="_parent"> DirectLink </a></li> <li>B. Kress, Applied Digital Optics: From Micro-optics to Nanophotonics (John Wiley 2007). <a class="file" href="https://onlinelibrary.wiley.com/doi/book/10.1002/9780470022658" target="_parent"> DirectLink </a></li> <li>K. Curtis, D. Psaltis, "Cross talk in phase-coded holographic memories", J Opt Soc Am. 10(12), 2547 (1993). <a class="file" href="https://doi.org/10.1364/JOSAA.10.002547" target="_parent"> CrossRef </a></li> <li>W.S. Colburn, B.J. Chang, "Holographic combiners for head up displays", Tech Report No. AFAL-TR-77-110, (1977). <a class="file" href="https://apps.dtic.mil/sti/pdfs/ADA047998.pdf" target="_parent"> DirectLink </a></li> <li>J. Kimmel, T. Levola, P. Saarikko, "A novel diffractive backlight concept for mobile displays", J Soc Inf Disp 16(2), (2008). <a class="file" href="https://doi.org/10.1889/1.2841870" target="_parent"> CrossRef </a></li> </ol>2023-07-02T00:00:00+02:00Copyright (c) 2023 Photonics Letters of Polandhttps://photonics.pl/PLP/index.php/letters/article/view/15-11Contributions to the Jubilee Symposium of the Photonics Society of Poland for its 15th anniversary by Optica2023-06-27T16:45:04+02:00Claus Rollclausroll@osa.orgUlrike Woggonulrike.woggon@tu-berlin.de<p>In this article we summarize our presentations as two representatives from Optica (formerly OSA) at the ceremony celebrating the 15<sup>th</sup> anniversary of the Photonics Society of Poland. The first presentation provides an update of the dynamic industrial revolution occurring in light science and technologies. In the second presentation, recent activities of Optica in Europe are shown.</p>2023-07-02T00:00:00+02:00Copyright (c) 2023 Photonics Letters of Polandhttps://photonics.pl/PLP/index.php/letters/article/view/15-5Photonics Society of Poland celebrates 15th Anniversary2023-06-30T15:04:51+02:00Tomasz Wolińskitomasz.wolinski@pw.edu.pl<p>Photonics Society of Poland (PSP) celebrated its 15th Anniversary on 12 May 2023 in the Physics Building of the Warsaw University of Technology. The Jubilee PSP Symposium was co-located with the 2nd International Photonics Job Fair and with the International Day of Light IDL-2023. The current, 58th PLP issue contains - among others - papers written by the distinguished guests of 15th Anniversary PSP Jubilee: Bernard Kress, Ulrike Woggon, and Claus Roll.</p>2023-07-02T00:00:00+02:00Copyright (c) 2023 Photonics Letters of Poland