Superprism effect in low-contrast photonic crystals

Adam Filipkowski, Ryszard Buczynski, Ireneusz Kujawa, Dariusz Pysz, Andrew Waddie, Mohammad R. Taghizadeh, Ryszard Stępień

Abstract


In this paper we study a superprism effect in a low contrast volumetric photonic crystal. The photonic crystals considered in the simulations have hexagonal lattices and a refractive index difference of 0.1 for double glass crystals and 0.6 for air-glass structures. The simulations show the existence of a superprism effect in both types of structures for an incident wavelength of 850 nm. In both cases various linear fill factors are studied in order to maximize the frequency range of a superprism effect. In a double glass structure, the maximum normalized frequency range is equal to 0.012, while for the air glass structures it reaches 0.108.

Full Text: PDF

References:
  1. J.-M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, D. Maystre, A. Tchelnokov, "Photonic Crystals: Towards Nanoscale Photonic Devices", Springer Berlin, 2005.
  2. P. St. J. Russell, "Interference of integrated Floquet-Bloch waves", Phys. Rev. A 33, 3232?3242 (1986). [CrossRef]
  3. R. Zengerle, "Light Propagation in Singly and Doubly Periodic Planar Waveguides ", J. Mod. Opt. 34, 1589 1589-1617 (1987). [CrossRef]
  4. P. Yeh, "Electromagnetic propagation in birefringent layered media", J. Opt. Soc. Am. 69, 742-756 (1979). [CrossRef]
  5. N. Malkova, D. A. Scrymgeour, V. Gopalan, "Numerical study of light-beam propagation and superprism effect inside two-dimensional photonic crystals", Phys. Rev. B 72, 45144 (2005). [CrossRef]
  6. S. Foteinopoulou, C. M. Soukoulis, "Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects", Phys. Rev. B 72, 165112 (2005). [CrossRef]

Full Text:

PDF

We use cookies that are necessary for the website to function and cannot be switched off in our systems. Click here for more information.


Photonics Letters of Poland - A Publication of the Photonics Society of Poland
Published in cooperation with SPIE

ISSN: 2080-2242