A plasmonic modulator based on metal-insulator-metal waveguide with barium titanate core

Authors

  • Viktoriia E. Babicheva DTU Fotonik, Technical University of Denmark
  • Andrei V. Lavrinenko DTU Fotonik, Technical University of Denmark

DOI:

https://doi.org/10.4302/photon.%20lett.%20pl.v5i2.401

Abstract

We design a plasmonic modulator which can be utilized as a compact active device in photonic integrated circuits. The active material, barium titanate (BaTiO3), is sandwiched between metal plates and changes its refractive index under applied voltage. Some degree of switching of ferroelectric domains from the in-plane to out-of-plane orientation provides the change of the refractive index, which can be exploited for effective light modulation. By numerical analysis we prove that the π phase change can be achieved with a 12…15 μm length device having propagation losses 0.05…0.2 dB/μm.

Full Text: PDF

References
  1. A.V. Zayats, I.I. Smolyaninov, and A.A. Maradudin, "Nano-optics of surface plasmon polaritons", Phys. Rep. 408, 131 (2005). CrossRef
  2. J.A. Schuller et al., "Plasmonics for extreme light concentration and manipulation", Nature Materials 9, 193 (2010). CrossRef
  3. D.K. Gramotnev and S.I. Bozhevolnyi, "Plasmonics beyond the diffraction limit", Nat. Photon. 4, 83 (2010). CrossRef
  4. K.F. MacDonald and N.I. Zheludev, "Active plasmonics: current status", Laser Photon. Rev. 4, 562–567 (2010). CrossRef
  5. V.J. Sorger, N.D. Lanzillotti-Kimura, Ren-Min Ma and Xiang Zhang, "Ultra-compact silicon nanophotonic modulator with broadband response", Nanophotonics 1, 17 (2012). CrossRef
  6. H.M.G. Wassel et al., "Opportunities and Challenges of Using Plasmonic Components in Nanophotonic Architectures", IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2, 154-168 (2012). CrossRef
  7. W. Cai, J.S. White, and M.L. Brongersma, "Compact, High-Speed and Power-Efficient Electrooptic Plasmonic Modulators", Nano Letters 9, 4403 (2009). CrossRef
  8. J.A. Dionne, K. Diest, L.A. Sweatlock, and H.A. Atwater, "PlasMOStor: A Metal−Oxide−Si Field Effect Plasmonic Modulator", Nano Lett. 9, 897 (2009). CrossRef
  9. Wangshi Zhao and Zhaolin Lu, "Nanoplasmonic optical switch based on Ga-Si3N4-Ga waveguide", Optical Engineering 50, 074002 (2011). CrossRef
  10. B.A. Kruger et al., "Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches", Optics Express 20, 23598 (2012). CrossRef
  11. A. Joushaghani et al., "Sub-volt broadband hybrid plasmonic-vanadium dioxide switches", Appl. Phys. Lett. 102, 061101 (2013). CrossRef
  12. J.A. Dionne, L.A. Sweatlock, H.A. Atwater, and A. Polman, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization", Phys. Rev. B 73, 035407 (2006). CrossRef
  13. Y. Kurokawa and H.T. Miyazaki, "Metal-insulator-metal plasmon nanocavities: Analysis of optical properties", Phys. Rev. B 75, 035411 (2007). CrossRef
  14. Bozena Jaskorzynska, Yi Song, and Min Qiu, "Tradeoff between mode confinement, loss, and cross-talk, for dielectric and metal slot waveguides", Photonics Letters of Poland 1, 172 (2009). CrossRef
  15. A.V. Krasavin and A.V. Zayats, "Photonic Signal Processing on Electronic Scales: Electro-Optical Field-Effect Nanoplasmonic Modulator", Physical Review Letters 109, 053901 (2012). CrossRef
  16. A. Emboras et al., "Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides", Appl. Phys. Lett. 101, 251117 (2012). CrossRef
  17. A. Melikyan et al., "Surface plasmon polariton absorption modulator", Optics Express 19, 8855 (2011). CrossRef
  18. V.E. Babicheva and A.V. Lavrinenko, "Surface plasmon polariton modulator with optimized active layer", Proc. SPIE 8424, 842413 (2012). CrossRef
  19. V.E. Babicheva and A.V. Lavrinenko, "Plasmonic modulator optimized by patterning of active layer and tuning permittivity", Opt. Commun. 285, 5500 (2012). CrossRef
  20. Zhaolin Lu, Wangshi Zhao, and Kaifeng Shi, "Ultracompact Electroabsorption Modulators Based on Tunable Epsilon-Near-Zero-Slot Waveguides", IEEE Photonics Journal 4, 735 (2012). CrossRef
  21. V.E. Babicheva, I.V. Kulkova, R. Malureanu, K. Yvind, and A.V. Lavrinenko, "Plasmonic modulator based on gain-assisted metal–semiconductor–metal waveguide", Photonics and Nanostructures-Fundamentals and Applications 10, 389 (2012). CrossRef
  22. V.E. Babicheva, R. Malureanu, and A.V. Lavrinenko, "Plasmonic modulator based on thin metal-semiconductor-metal waveguide with gain core", Proc. SPIE 8627, 86270X (2013). CrossRef
  23. V.E. Babicheva, R. Malureanu, and A.V. Lavrinenko, "Plasmonic finite-thickness metal-semiconductor-metal waveguide as ultra-compact modulator", CrossRef
  24. A. Petraru, J. Schubert, M. Schmid, C. Buchal, "Ferroelectric BaTiO3 thin-film optical waveguide modulators", Appl. Phys. Lett. 81, 1375 (2002). CrossRef
  25. P. Tang, D.J. Towner, T. Hamano, A.L. Meier, B.W. Wessels, "Electrooptic modulation up to 40 GHz in a barium titanate thin film waveguide modulator", Opt. Express 12, 5962 (2004). CrossRef
  26. P. Tang, D.J. Towner, A.L. Meier, B.W. Wessels, "Low-voltage, polarization-insensitive, electro-optic modulator based on a polydomain barium titanate thin film", Appl. Phys. Lett. 85, 4615 (2004). CrossRef
  27. P. Tang, A.L. Meier, D.J. Towner, and B.W. Wessels, "BaTiO3 thin-film waveguide modulator with a low voltage-length product at near-infrared wavelengths of 0.98 and 1.55 µm", Optics Letters 30, 254 (2005). CrossRef
  28. I.D. Kim, Y. Avrahami, H.L. Tuller, Y.B. Park, M.J. Dicken, H.A. Atwater, "Study of orientation effect on nanoscale polarization in BaTiO3 thin films using piezoresponse force microscopy", Appl. Phys. Lett. 86, 192907 (2005). CrossRef
  29. M.J. Dicken, K. Diest, Y.B. Park, H.A. Atwater, "Growth and optical property characterization of textured barium titanate thin films for photonic applications", J. Cryst. Growth 300, 330 (2007). CrossRef
  30. M.J. Dicken et al., "Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers", Nano Lett. 8, 4048 (2008). CrossRef
  31. P.B. Johnson and R.W. Christy, "Optical Constants of the Noble Metals", Phys. Rev. B 6, 4370 (1972). CrossRef
  32. A.D. Rakić, "Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum", Appl. Opt. 34, 4755 (1995). CrossRef
  33. I.D. Rukhlenko, M. Premaratne, and G.P. Agrawal, "Guided plasmonic modes of anisotropic slot waveguides", Nanotechnology 23, 444006 (2012). CrossRef
  34. Shiyang Zhu, G. Q. Lo, and D. L. Kwong, "Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators", Optics Express 18, 27802 (2010). CrossRef
  35. Shiyang Zhu, G.Q. Lo, and D.L. Kwong, "Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides", Appl. Phys. Lett. 99, 151114 (2011). CrossRef
  36. R. Thomas, Z. Ikonic, R.W. Kelsall, Photonics and Nanostructures – Fundamentals and Applications 10, 183 (2012). CrossRef

Downloads

Published

2013-06-30

How to Cite

[1]
V. E. Babicheva and A. V. Lavrinenko, “A plasmonic modulator based on metal-insulator-metal waveguide with barium titanate core”, Photonics Lett. Pol., vol. 5, no. 2, pp. pp. 57–59, Jun. 2013.

Issue

Section

Articles