Optical bifurcations in media with the Kerr nonlinearity

Krzysztof Zegadlo, Miroslaw Karpierz


Spontaneous symmetry breaking phenomenon or optical bifurcation occurs in media with some kind of symmetry when self-focusing nonlinearity is applied. In this manuscript that effect is investigated for the Kerr nonlinearity in structures with periodical distribution of refractive index. Not only symmetry bifurcation of the fundamental mode but also properties of a beam propagating in such structures has been studied. Spontaneous symmetry breaking has been presented both as a function of total beam power and as a function of relative refractive index change. The results can be utilized for all optical switching effect.

Full Text: PDF

  1. D. Landau, E.M. Lifshitz, Quantum Mechanics (Moscow, Nauka 1974).
  2. Y.S. Kivshar, and G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (New York, Academic 2003).
  3. S. Giorgini, L.P. Pitaevskii, and S. Stringari, "Theory of ultracold atomic Fermi gases", Rev. Mod. Phys. 80, 1215 (2008). CrossRef
  4. E.A. Ostrovskaya, Y.S. Kivshar, M. Lisak, B. Hall, F. Cattani, and D. Anderson, "Coupled-mode theory for Bose-Einstein condensates", Phys. Rev. A 61, 031601 (2000). CrossRef
  5. M. Albiez, R. Gati, J. Folling, S. Hunsmann, M. Cristiani, and M.K. Oberthaler, "Direct Observation of Tunneling and Nonlinear Self-Trapping in a Single Bosonic Josephson Junction", Phys. Rev. Lett. 95, 010402 (2005). CrossRef
  6. P.G. Kevrekidis, Z. Chen, B.A. Malomed, D.J. Frantzeskakis, and M.I. Weinstein, "Spontaneous symmetry breaking in photonic lattices: Theory and experiment", Phys. Lett. A 340, 275 (2005). CrossRef
  7. S.M. Jensen, "The nonlinear coherent coupler", IEEE J. Quantum Electron. QE-18, 1580 (1982). CrossRef
  8. M.A. Karpierz, "Nonlinear directional couplers with asymmetrical distribution of nonlinearity", Opt. Commun. 90, 241 (1992). CrossRef
  9. A.W. Snyder, D.J. Mitchell, L. Poladian, D.R. Rowland, and Y. Chen, "Physics of nonlinear fiber couplers", J. Opt. Soc. Am. B 8, 2102 (1991). CrossRef
  10. C. Pare and M. Florjańczyk, "Approximate model of soliton dynamics in all-optical couplers", Phys. Rev. A 41, 6287 (1990). CrossRef
  11. W.C.K. Mak, B.A. Malomed, and P.L. Chu, "Solitary waves in coupled nonlinear waveguides with Bragg gratings", J. Opt. Soc. Am. B 15, 1685 (1998). CrossRef
  12. G. Herring, P.G. Kevrekidis, B.A. Malomed, R. Carretero-Gonzalez, and D.J. Frantzeskakis, "Symmetry breaking in linearly coupled dynamical lattices", Phys. Rev. E 76, 066606 (2007). CrossRef
  13. Lj. Hadzievski, G. Gligoric, A. Maluckov, and B.A. Malomed, "Interface solitons in one-dimensional locally coupled lattice systems", Phys. Rev. A 82, 033806 (2010) CrossRef
  14. V.A. Brazhnyi and B.A. Malomed, "Spontaneous symmetry breaking in Schrödinger lattices with two nonlinear sites", Phys. Rev. A 83, 053844 (2011). CrossRef
  15. K.A. Brzdąkiewicz, M.A. Karpierz, A. Fratalocchi, G. Assanto, "Nematic liquid crystal waveguide arrays", Opto-electron. Rev. 13, 107 (2005) DirectLink
  16. J.E. Midwinter, Optical Fibers for transmission (London, John Wiley 1979)
  17. J. Van Roey, J. van der Donk, and P.E. Lagasse, "Beam-propagation method: analysis and assessment", J. Opt. Soc. Am. 71, 803 (1981) CrossRef
  18. Y. Chung and N. Dagli, J. Quantum. Electron. 26, 1335 (1990) CrossRef
  19. D. Yevick, "A guide to electric field propagation techniques for guided-wave optics", Opt. Quant. Electron. 26, 185 (1994) CrossRef
  20. C. Ma and E. Van Keuren, "A three-dimensional wide-angle BPM for optical waveguide structures", Opt. Express 15, 402 (2007) CrossRef
  21. F.A. Sala and M.A. Karpierz, "Modeling of molecular reorientation and beam propagation in chiral and non-chiral nematic liquid crystals", Opt. Express 20, 13923 (2012) CrossRef
  22. P.S. Jung and M.A. Karpierz, Opt. Commun. 285, 4184 (2012) CrossRef
  23. P.S. Jung and M.A. Karpierz, "Analysis of Light Propagation in Optical Fibers with a High Step Index", Acta Phys. Polon. A 122, 829 (2012). CrossRef
  24. S. Jungling, "A study and optimization of eigenmode calculations using the imaginary-distance beam-propagation method", IEEE J. Quantum Elect. 30, 2098 (1994) CrossRef
  25. C.L. Xu, W.P. Huang, and S.K. Chaudhuri, "Efficient and accurate vector mode calculations by beam propagation method", J. Lightwave Technol. 11, 1209 (1993) CrossRef
  26. Y.Z. He and F.G. Shi, "Finite-difference imaginary-distance beam propagation method for modeling of the fundamental mode of photonic crystal fibers", Opt. Commun. 225, 151 (2003) CrossRef

Full Text:


We use cookies that are necessary for the website to function and cannot be switched off in our systems. Click here for more information.

Photonics Letters of Poland - A Publication of the Photonics Society of Poland
Published in cooperation with SPIE

ISSN: 2080-2242