Compact single-longitudinal mode microchip laser operating at 532 nm


  • Jaroslaw Sotor
  • Grzegorz Dudzik
  • Krzysztof Abramski



In this paper we present compact, single-longitudinally mode diode pumped microchip laser operating at 532 nm. The laser is based on a monolithic Nd:YVO4/YVO4/KTP laser resonator. It is fully integrated with specially designed driving electronics, power supply unit mechanical assembly, pumping unit, beam expander and can work as an independent device. Thanks to the monolithic resonator design and low noise driving electronics the laser is highly resistant to environmental hazards. The output power, passive frequency stability and linewidth were at the level of 55mW, 3•10-9 @ 1s mean time and 25kHz, respectively.

Full Text: PDF

  1. H. Yang, J. Deibel, S. Nyberg, K. Riles, "High-precision absolute distance and vibration measurement with frequency scanned interferometry", Appl. Opt. 44, 3937 (2005), CrossRef
  2. S.P. Perfetto, M. Roederer, "Increased immunofluorescence sensitivity using 532 nm laser excitation", Cytometry Part A 71A, 73 (2007). CrossRef
  3. A. Antonczak, P. Koziol, J. Sotor, P. Kaczmarek, K.M. Abramski, "Laser Doppler vibrometry with a single-frequency microchip green laser", Meas. Sci. Technol. 22, 115306 (2011). CrossRef
  4. C.L. Tang, H. Statz, G. deMars, "Spectral Output and Spiking Behavior of Solid?State Lasers", J. Appl. Phys. 34, 2289 (1963). CrossRef
  5. J.J. Zayhowski, "Limits imposed by spatial hole burning on the single-mode operation of standing-wave laser cavities", Opt. Lett. 15, 431 (1990), CrossRef
  6. J.J. Zayhowski, A. Mooradian, "Single-frequency microchip Nd lasers", Opt. Lett. 14, 24(1989), CrossRef
  7. T. Taira, A. Mukai, Y. Nozawa, T. Kobayashi, "Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers", Opt. Lett. 16, 1955 (1991), CrossRef
  8. Z. Lin, C. Gao, M. Gao, Y. Zhang, H. Weber, "Diode-pumped single-frequency microchip CTH:YAG lasers using different pump spot diameters", Appl. Phys. B 94, 81 (2009). CrossRef
  9. V. Evtuhov, A.E. Siegman, "A “Twisted-Mode” Technique for Obtaining Axially Uniform Energy Density in a Laser Cavity", Appl. Opt. 4, 142 (1965), CrossRef
  10. P. Polynkin, A. Polynkin, M. Mansuripur, J. Moloney, N. Peyghambarian, "Single-frequency laser oscillator with watts-level output power at 1.5 µm by use of a twisted-mode technique", Opt. Lett. 30, 2745 (2005), CrossRef
  11. E. Wu, H. Pan, S. Zhang, H. Zeng, "High power single-longitudinal-mode operation in a twisted-mode-cavity laser with a c-cut Nd:GdVO4 crystal", Appl. Phys. B 80, 459 (2005). CrossRef
  12. M.V. Okhapkin, M.N. Skvortsov, A.M. Belkin, N.L. Kvashnin, S.N. Bagayev, "Tunable single-frequency diode-pumped Nd:YAG ring laser at 1064/532 nm for optical frequency standard applications", Opt. Comm. 203, 359 (2002), CrossRef
  13. T.J. Kane, R.L. Byer, "Monolithic, unidirectional single-mode Nd:YAG ring laser", Opt. Lett. 10, 65 (1985), CrossRef
  14. B. Yao, X. Duan, D. Fang, Y. Zhang, L. Ke, Y. Ju, Y. Wang, G. Zhao, "7.3uW of single-frequency output power at 2.09 μm from an Ho:YAG monolithic nonplanar ring laser", Opt. Lett. 33, 2161 (2008), CrossRef
  15. X. Zhang, Y. Ju, Y. Wang, "Diode-end-pumped room temperature Tm,Ho:YLF lasers", Opt. Expr. 13, 4056 (2005), CrossRef
  16. G.J. Friel, A.J. Kemp, T.K. Lake, B.D. Sinclair, "Compact and Efficient Nd:YVO 4 Laser that Generates a Tunable Single-Frequency Green Output", Appl. Opt. 39, 4333 (2000), CrossRef
  17. T.Y. Fan, "Single-axial mode, intracavity doubled Nd:YAG laser", IEEE J. Quantum Electron. 27, 2091 (1991). CrossRef
  18. H. Nagai, M. Kume, I. Ohta, H. Shimizu, M. Kazamura, "Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate", IEEE J. Quantum Electron. 28, 1164 (1992). CrossRef
  19. C. Pedersen, P. Lichtenberg Hansen, T. Skettrup, P. Buchhave, "Diode-pumped single-frequency Nd:YVO4 laser with a set of coupled resonators", Opt. Lett. 20, 1389 (1995), CrossRef
  20. I. Häggström, B. Jacobsson, F. Laurell, "Monolithic Bragg-locked Nd:GdVO4 laser", Opt. Expr. 15, 11589 (2007), CrossRef
  21. J. Watanabe, T. Harimoto, "Oscillating longitudinal-mode control of a microchip green laser by injection current", Opt. Expr. 15, 965(2007), CrossRef
  22. Y. Ma, L. Wu, H. Wu, W. Chen, Y. Wang, S. Gu, "Single-longitudinal mode Nd:YVO4 microchip laser with orthogonal-polarization bidirectional traveling-waves mode", Opt. Expr. 16, 18702 (2008), CrossRef
  23. J.Z. Sotor, G. Dudzik, A.J. Antonczak, K.M. Abramski, "Single-longitudinal mode, monolithic, green solid-state laser", Appl. Phys. B 103, 67 (2010). CrossRef
  24. J.Z. Sotor, A.J. Antończak, K.M. Abramski, "Single-longitudinal mode Nd:YVO4/YVO4/KTP green solid state laser", Opto- Electron. Rev 18, 75 (2010). CrossRef
  25. J.Z. Sotor, G. Dudzik, K.M. Abramski, "Single frequency, monolithic Nd:YVO4/YVO4/KTP diode pumped solid state laser optimization by parasitic oscillations elimination", Opt. Comm. 291, 279 (2013), CrossRef
  26. J.Z. Sotor, G. Dudzik, G.J. Sobon, K. Krzempek, K.M. Abramski, "0.5W single-longitudinal mode, monolithic Nd:YVO4 microchip laser", in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh4I.7, CrossRef




How to Cite

Sotor, J., Dudzik, G., & Abramski, K. (2014). Compact single-longitudinal mode microchip laser operating at 532 nm. Photonics Letters of Poland, 6(1), pp. 2–4. lett. pl.v6i1.432