Polarization properties of polymer-based photonic crystal fibers

David Poudereux, Karolina Mileńko, Artur Dybko, José Manuel Otón, Tomasz R. Woliński

Abstract


Selectively filled photonic crystal fibers with polydimethylsiloxane (PDMS), a silicon-type material, have been studied. Is has been demonstrated that polarization properties of these hybrid devices and the properties of the guided light in relation with the temperature changes, finding that the state of polarization (SOP) change with the increasing temperature but remains constant for a wide spectrum of wavelengths for a determinate temperature.

Full Text: PDF

References
  1. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, Optical devices based on liquid crystal photonic bandgap fibres, Opt. Express, vol. 11, no. 20, pp. 2589?2596, (2003). CrossRef
  2. H. Y. Choi, M. J. Kim, and B. H. Lee, All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber, Opt Express, vol. 15, no. 9, pp. 5711?5720, (2007). CrossRef
  3. B. Dong, J. Hao, and Z. Xu, Temperature insensitive curvature measurement with a core-offset polarization maintaining photonic crystal fiber based interferometer, Opt. Fiber Technol., vol. 17, no. 3, pp. 233?235, (2011). CrossRef
  4. D. Poudereux, P. Corredera, E. Otón, J. M. Otón, and X. Q. Arregui, Photonic liquid crystal fiber intermodal interferometer, Opt. Pura Apl., vol. 46, no. 4, pp. 321?325, (2013). CrossRef
  5. P. Lesiak, G. Rajan,Y. Semenova,G. Farrell, A. Boczkowska, A. Domanski, and T. Wolinski, A hybrid highly birefringent fiber optic sensing system for simultaneous strain and temperature measurement, Photonics Letters of Poland, vol. 2 no 3,140-142 (2010) CrossRef
  6. M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography, Science, vol. 288, no. 5463, pp. 113?116,(2000). CrossRef
  7. T. Thorsen, S. J. Maerkl, and S. R. Quake, Microfluidic Large-Scale Integration, Science, vol. 298, no. 5593, pp. 580?584,(2002). CrossRef
  8. K. Hosokawa and R. Maeda, A pneumatically-actuated three-way microvalve fabricated with polydimethylsiloxane using the membrane transfer technique, J. Micromechanics Microengineering, vol. 10, no. 3, p. 415, (2000). CrossRef
  9. D. C. Duffy, O. J. A. Schueller, S. T. Brittain, and G. M. Whitesides, Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow, J. Micromechanics Microengineering, vol. 9, no. 3, p. 211, (1999). CrossRef
  10. J. Chen, W. Wang, J. Fang, and K. Varahramyan, Variable-focusing microlens with microfluidic chip, J. Micromechanics Microengineering, vol. 14, no. 5, p. 675,(2004). CrossRef
  11. H. Lee, S.-I. Chang, and E. Yoon, A Flexible Polymer Tactile Sensor: Fabrication and Modular Expandability for Large Area Deployment, J. Microelectromechanical Syst., vol. 15, no. 6, pp. 1681?1686, (2006). CrossRef
  12. H. Kudo, T. Sawada, E. Kazawa, H. Yoshida, Y. Iwasaki, and K. Mitsubayashi, A flexible and wearable glucose sensor based on functional polymers with soft-MEMS techniques, Biosens. Bioelectron., vol. 22, no. 4, pp. 558?562, (2006). CrossRef
  13. C. Markos, K. Vlachos, and G. Kakarantzas, Guiding and birefringent properties of a hybrid PDMS/silica photonic crystal fiber, vol. 7914, pp. 791427?791427?6, (2011). CrossRef
  14. C. Kerbage and B. Eggleton, Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber, Opt. Express, vol. 10, no. 5, pp. 246?255, Mar. (2002). CrossRef
  15. A. Barlow and D. N. Payne, The stress-optic effect in optical fibers, IEEE J. Quantum Electron., vol. 19, no. 5, pp. 834?839,(1983). CrossRef

Full Text:

PDF

We use cookies that are necessary for the website to function and cannot be switched off in our systems. Click here for more information.


Photonics Letters of Poland - A Publication of the Photonics Society of Poland
Published in cooperation with SPIE

ISSN: 2080-2242