Innovative UV sensor based on highly birefringent fiber covered by graphene oxide

Piotr Lesiak, Piotr Sobotka, Marcin Bieda, Anna Dużyńska, Anna Wróblewska, Miłosz Chychłowski, Tomasz Woliński


The innovative idea of this paper implies the possibility to exploit the properties of graphene oxide (GO) to UV radiation sensor design. The idea assumes that a temperature change around the fiber can be induced by UV radiation. Particular attention in the case of UV radiation detection merits of GO, which has a high UV absorption only. UV lighting will increase the internal energy of the GO and consequently locally raise the temperature on the surface of the optical fiber. The temperature is changing stress distribution in the fiber.

Full Text: PDF

  1. O. Lupan et al., "Ultraviolet photoconductive sensor based on single ZnO nanowire", Phys. Stat. Sol. (a) 207(7), 1735 (2010). CrossRef
  2. G. Suchaneck, G. Gerlach, "Ferroelectric–Semiconductor UV Sensors", Phys. Stat. Sol. (a) 185(1), 115 (2001). CrossRef
  3. K.T.V. Grattan, T. Sun, "Fiber optic sensor technology: an overview", Sensors and Actuators A: Physical 82, 40 (2000). CrossRef
  4. C. Fitzpatrick et al., "A novel multi-point ultraviolet optical fibre sensor based on cladding luminescence", Meas. Sci. Technol. 14(8), 1477 (2003). CrossRef
  5. A.V. Joža et al., "Simple and Low-cost Fiber-optic Sensors for Detection of UV Radiation", Telfor Journal 4(2), 133 (2012). DirectLink
  6. P. Lesiak et al., Acta Phys. Polon. A 120(4), 698 (2011). DirectLink
  7. M. Segal, "Selling graphene by the ton", Nature Nanotechnology 4, 612 (2009). CrossRef
  8. T.R. Wolinski, "Polarimetric Optical Fibers and Sensors" in Progress in Optics, ed. Emil Wolf (North Holland, Amsterdam, vol. XL, pp. 1-75, 2000).
  9. T.R. Wolinski, "Polarization Phenomena in Optical Systems', in Enc. Opt. Engineering, ed. R. Diggers (M. Dekker, New York, pp. 2150-2175, 2003).
  10. W.J. Bock, A.W. Domanski, T.R. Wolinski, "Influence of high hydrostatic pressure on beat length in highly birefringent single-mode bow tie fibers", Appl. Opt. 29, 3484 (1990). CrossRef
  11. Z.C. Wu et al., "Transparent, Conductive Carbon Nanotube Films", Science 305, 1273 (2004). CrossRef
  12. A. Jorio, M. Dresselhaus, R. Saito, G.F. Dresselhaus, Raman Spectroscopy in Graphene Related Systems (Wiley-VCH, 2011). CrossRef
  13. G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, K.M. Abramski, "Graphene Oxide vs. Reduced Graphene Oxide as saturable absorbers for Er-doped passively mode-locked fiber laser", Opt. Expr. 20, 19463 (2012) CrossRef
  14. F. Zhang, J.W.Y. Lit, "Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers", Appl. Opt. 32(13), 2213 (1993). CrossRef
  15. S. Pei, H.M. Cheng, "The reduction of graphene oxide", Carbon 50, 3210 (2012). CrossRef

Full Text:


We use cookies that are necessary for the website to function and cannot be switched off in our systems. Click here for more information.

Photonics Letters of Poland - A Publication of the Photonics Society of Poland
Published in cooperation with SPIE

ISSN: 2080-2242