Theorical analysis of a monolithic all-active three-section semiconductor laser

Authors

  • Mohammed Mehdi Bouchene Laboratoire des Télécommunications Département Électronique et Télécommunications Faculté des Sciences et de la Technologie Université 8 Mai 1945 Guelma BP 401 GUELMA 24000 - ALGERIE
  • Rachid Hamdi
  • Qin Zou

DOI:

https://doi.org/10.4302/plp.v9i4.785

Abstract

We propose a novel semiconductor laser structure. It is composed of three cascaded active sections: a Fabry-Pérot laser section sandwiched between two gain-coupled distributed feedback (DFB) laser sections. We have modeled this multi-section structure. The simulation results show that compared with index- and gain-coupled DFB lasers, a significant reduction in the longitudinal spatial-hole burning can be obtained with the proposed device, and that this leads to a stable single longitudinal mode operation at relatively high optical power with a SMSR exceeding 56dB.

Full Text: PDF

References
  1. L.A. Coldren, "Monolithic tunable diode lasers", IEEE J. Select. Topics Quant. Electron. 6, 988 (2000) CrossRef
  2. O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, L. Backbom, "30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 [micro sign]m wavelength", Electron. Lett. 33(6), 488 (1997). CrossRef
  3. N. Kim, J. Shin, E. Sim, C.W. Lee, D.-S. Yee, M.Y. Jeon, Y. Jang, K.H. Park, "Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation", Opt. Expr. 17(16), 13851 (2009). CrossRef
  4. M.J. Wallace, R. ORreilly Meehan, R.R Enright, F. Bello, D. Mccloskey, B. Barabadi, E.N. Wang, J.F. Donegan, "Athermal operation of multi-section slotted tunable lasers", Opt. Expr. 25(13), 14426 (2017). CrossRef
  5. J.E. Carroll, J.E.A. Whiteaway, R.G.S. Plumb, "Distributed Feedback Semiconductor Lasers", Distributed feedback semiconductor lasers (IEE and SPIE, 1998). CrossRef
  6. H. Ghafour-Shiraz, Distributed Feedback Laser Diodes and Optical Tunable Filters (Wiley, 2003). CrossRef
  7. D.D. Marcenac, Ph.D dissertation (University of Cambridge, 1993). DirectLink
  8. L.M. Zhang, J.E. Carroll, C. Tsang, "Dynamic response of the gain-coupled DFB laser", IEEE J. Quant. Electr. 29, 1722 (1993). CrossRef
  9. W. Li, W.-P. Huang, X. Li, J. Hong, "Multiwavelength gain-coupled DFB laser cascade: design modeling and simulation", IEEE J. Quant. Electro. 36(10), 1110 (2000). CrossRef
  10. B.M. Mehdi, H. Rachid, in Proc. 3rd Intern. Conf. on Embedded Systems in Telecomm. and Instrument., Annaba, Algeria (2016). DirectLink
  11. C. Henry, "Theory of the linewidth of semiconductor lasers", IEEE J.Quant. Electr. QE-18, 259 (1982). CrossRef
  12. K. Takaki, T. Kise, K. Maruyama, N. Yamanaka, M. Funabashi, A. Kasukawa, "Reduced linewidth re-broadening by suppressing longitudinal spatial hole burning in high-power 1.55-/spl mu/m continuous-wave distributed-feedback (CW-DFB) laser diodes", IEEE J. Quant. Electr. 39, 1060 (2003) CrossRef

Downloads

Published

2017-12-31

How to Cite

[1]
M. M. Bouchene, R. Hamdi, and Q. Zou, “Theorical analysis of a monolithic all-active three-section semiconductor laser”, Photonics Lett. Pol., vol. 9, no. 4, pp. pp. 131–133, Dec. 2017.

Issue

Section

Articles