Designated ligand functionalization of gold nanoparticles for optimizing blue-phase liquid crystal composites

Authors

  • Kamil Orzechowski Faculty of Physics, Warsaw University of Technology http://orcid.org/0000-0003-2024-8786
  • Martyna Wasiluk Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
  • Konrad Jabłoński Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
  • Weronika Milewska Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
  • Olga Strzeżysz Institute of Chemistry, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland
  • Chun-Ta Wang Department of Photonics, National Sun Yat-sen University, No. 70 Lien-hai Rd., Kaohsiung 80424, Taiwan
  • Wiktor Lewandowski Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
  • Tomasz Woliński Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland

DOI:

https://doi.org/10.4302/plp.v16i4.1304

Abstract

This work presents the impact of the composition of the organic shell of 4 nm gold nanoparticles (Au NPs) on the optical properties and stability of the nanoparticle-doped blue-phase liquid crystals (BPLCs). Particularly, we show that the binary shell of NPs, comprising LC-like ligands, can significantly enhance the thermal stability of BPs. Moreover, modifying the shell composition enables control over the Bragg wavelength of BPLCs. Our findings highlight the potential of ligand-functionalized Au NPs to optimize BPLC-based photonic devices, emphasizing ligand functionalization as a crucial factor for improving stability of NPs, and controlling BPLC properties.

Full Text: PDF

References

  1. S. Meiboom and M. Sammon, "Structure of the Blue Phase of a Cholesteric Liquid Crystal", Phys. Rev. Lett., 44(13), 882 (1980). CrossRef
  2. S. Tanaka et al. "Muographic mapping of the subsurface density structures in Miura, Boso and Izu peninsulas, Japan", Sci. Rep. 5(1), 16180 (2015). CrossRef
  3. W. Cao, A. Muñoz, P. Palffy-Muhoray, B. Taheri, "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II", Nat. Mater. 1(2), 111 (2002). CrossRef
  4. H. Yoshida et al. "Heavy meson spectroscopy under strong magnetic field", Phys. Rev. E 94(4), 042703 (2016). CrossRef
  5. K. Orzechowski et al. "Polarization properties of cubic blue phases of a cholesteric liquid crystal", Opt. Mater. 69, 259 (2017). CrossRef
  6. H. Yoshida et al. "Nanoparticle-Stabilized Cholesteric Blue Phases", Appl. Phys. Express 2(12), 121501 (2009). CrossRef
  7. M. A. Gharbi et al. "Reversible Nanoparticle Cubic Lattices in Blue Phase Liquid Crystals", ACS Nano, 10(3), 3410 (2016). CrossRef
  8. W.-L. He et al. "Preparation and optical properties of Fe3O4 nanoparticles-doped blue phase liquid crystal", hys. Chem. Chem. Phys. 18(42), 29028 (2016). CrossRef
  9. A.P. Draude, T.Y. Kalavalapalli, M. Iliut, B. McConnell, and I. Dierking, "Stabilization of liquid crystal blue phases by carbon nanoparticles of varying dimensionality", Nanoscale Adv. 2(6), 2404 (2020). CrossRef
  10. M. Lavrič et al. "Blue phase stabilization by CoPt-decorated reduced-graphene oxide nanosheets dispersed in a chiral liquid crystal", J. Appl. Phys. 127(9), 095101 (2020). CrossRef
  11. M. Ravnik, G.P. Alexander, J.M. Yeomans, and S. Žumer, "Three-dimensional colloidal crystals in liquid crystalline blue phases", Proc. Natl. Acad. Sci. 108(13), 5188 (2011). CrossRef
  12. K. Orzechowski et al. "Achiral Nanoparticle-Enhanced Chiral Twist and Thermal Stability of Blue Phase Liquid Crystals", ACS Nano 16(12), 20577 (2022). CrossRef
  13. U.N. Tohgha, E.P. Crenshaw, M.E. McConney, K.M. Lee, N.P. Godman, "Tuning of optical properties and phase behavior of Nanomaterial-stabilized blue phase liquid crystals", J. Colloid Interface Sci. 639, 401 (2023). CrossRef
  14. O. Chojnowska, R. Dąbrowski, J. Yan, Y. Chen, S.T. Wu, "Electro-optical properties of photochemically stable polymer-stabilized blue-phase material", J. Appl. Phys. 116(21), 213505 (2014). CrossRef
  15. P. Kula, J. Herman, O. Chojnowska, "Synthesis and properties of terphenyl- and quaterphenyl-based chiral diesters", Liq. Cryst. 40(1), 83 (2013). CrossRef
  16. M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, "Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system", J. Chem. Soc. Chem. Commun. 7, 801 (1994). CrossRef
  17. J. Grzelak, M. Żuk, M. Tupikowska, and W. Lewandowski, "Modifying Thermal Switchability of Liquid Crystalline Nanoparticles by Alkyl Ligands Variation", Nanomaterials 8(3), 147 (2018). CrossRef
  18. M. Bagiński et al. "Understanding and Controlling the Crystallization Process in Reconfigurable Plasmonic Superlattices", ACS Nano 15(3), 4916 (2021). CrossRef

Downloads

Published

2024-12-31

How to Cite

[1]
K. Orzechowski, “Designated ligand functionalization of gold nanoparticles for optimizing blue-phase liquid crystal composites”, Photonics Lett. Pol., vol. 16, no. 4, pp. 71–75, Dec. 2024.

Issue

Section

Articles