Impact of UV radiation on sensing properties of conductive polymer and ZnO blend for NO2 gas sensing at room temperature

Piotr Dariusz Kałużyński, Marcin Procek, Agnieszka Stolarczyk

Abstract


In this paper we present an investigation on UV radiation on organic-inorganic blend made from conductive polymer (regio-regular poly(3-hexyltiophene) (rr-P3HT) and zinc oxide (ZnO) nanomaterial, which was used as a sensing layer for chemoresistor structure. The study showed that UV radiation has a significant impact on the dynamics of the response of the sensor being studied, which can be a significant element to improve the operation of such sensors at room temperature.

Full Text: PDF

References
  1. Kampa, M.., Castanas, E., "Human health effects of air pollution," Environ. Pollut. 151(2), 362-367 (2008). CrossRef
  2. Procek, M., Stolarczyk, A., Pustelny, T.., Maciak, E., "A Study of a QCM Sensor Based on TiO2 Nanostructures for the Detection of NO2 and Explosives Vapours in Air.," Sensors (Basel). 15(4), 9563-9581, MDPI AG (2015). CrossRef
  3. Procek M., Stolarczyk A., "Influence of near UV irradiation on ZnO nanomaterials NO2 gas sensing properties," Proc. SPIE 10830, 13th Conference on Integrated Optics: Sensors, Sensing Structures, and Methods, 108300P (14 August 2018); doi: 10.1117/12.2503471 CrossRef
  4. Procek M., Stolarczyk A., Maciak E., "Study of the impact ofUV radiation on NO2 sensing properties of graft comb copolymers of poly(3-hexylthiophene) at room temperature," Proc. SPIE 10455, 12th Conference on Integrated Optics: Sensors, Sensing Structures, and Methods, 104550N (1 September 2017); doi: 10.1117/12.2282777 CrossRef
  5. Djurišić, A.B. & Ng, Alan Man Ching & Chen, Xinyi. (2010). ZnO Nanostructures for Optoelectronics: Material Properties and Device Applications. Progress in Quantum Electronics. 34. 191-259. 10.1016/j.pquantelec.2010.04.001. CrossRef
  6. Xie, Tao & Xie, Guangzhong & Du, Hongfei & Su, Yuanjie & Ye, Zongbiao & Chen, Yuyan & Jiang, Yadong. (2015). Two novel methods for evaluating the performance of OTFT gas sensors. Sensors and Actuators B: Chemical. 230. 10.1016/j.snb.2015.12.056. CrossRef
  7. Procek, M.; Stolarczyk, A.; Pustelny, T. Impact of Temperature and UV Irradiation on Dynamics of NO2 Sensors Based on ZnO Nanostructures. Nanomaterials 2017, 7, 312. CrossRef

Full Text:

PDF



Photonics Letters of Poland - A Publication of the Photonics Society of Poland
Published in cooperation with SPIE

ISSN: 2080-2242