Diffusion length of singlet excitons in copper phthalocyanine films

Authors

  • Ryszard Signerski Gdansk University of Technology
  • Grazyna Jarosz Gdansk University of Technology

DOI:

https://doi.org/10.4302/photon.%20lett.%20pl.v3i3.225

Abstract

The work presents a method of extraction of exciton diffusion length from photocurrent spectrum measurements. A copper phthalocyanine (CuPc) layer was taken into consideration as an example. Samples were made in a high vacuum system by subsequent evaporation of the following layers: N, N’-dimethyle-3,4,9,10-perylenbis(dicarboximide) (MePTCDI) and CuPc and Au onto glass/ITO substrate. The subject of our investigation was a saturation photocurrent generated by exciton dissociation at MePTCDI/CuPc interference. As a result of our analysis, the product of quantum efficiency of exciton dissociation and charge carrier collection and exciton diffusion length was estimated and it yielded 1.6nm.

Full Text: PDF

References
  1. M. Pope, Ch. Swenberg, Electronic Processes in Organic Crystals and Polymers (New York, Oxford University Press 1999).
  2. P. Peumans, A. Yakimov, S.R. Forrest, "Small molecular weight organic thin-film photodetectors and solar cells", J. Appl. Phys. 93, 3693 (2003)[CrossRef]
  3. M. Riede, T. Mueller, W. Tress, R. Schueppel, K. Leo, "Small-molecule solar cells—status and perspectives", Nanotechnology 19, 1 (2008)[CrossRef]
  4. A.W. Hains, Z. Liang, M.A. Woodhouse, G.A. Gregg, "Molecular Semiconductors in Organic Photovoltaic Cells", Chem. Rev. 2010, 110 (11), pp 6689–6735[CrossRef]
  5. Y. Zheng, J. Xue, "Organic Photovoltaic Cells Based on Molecular Donor-Acceptor Heterojunctions", Polymer Reviews 50, 420 (2010)[CrossRef]
  6. V.M. Kenkre, P.E. Parris, D. Schmid, "Investigation of the appropriateness of sensitized luminescence to determine exciton motion parameters in pure molecular crystals", Phys. Rev. B32, 4946 (1985)[CrossRef]
  7. S.R. Scully, M.D. McGehee, "Effects of optical interference and energy transfer on exciton diffusion length measurements in organic semiconductors", J. Appl. Phys. 100, 034907 (2006)[CrossRef]
  8. R.R. Lunt, N.C. Giebink, A.A. Belak, J.B. Benziger, S.R. Forrest, "Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching", J.Appl. Phys. 105, 053711 (2009)[CrossRef]
  9. Y. Vertsimakha, P. Lustyk, K. Palewska, J. Sworakowski, O. Lytvyn, "Optical and photovoltaic properties of thin films of N,N'-dimethyl-3,4,9,10-perylenetetracarboxylic acid diimide", Thin Solid Films 515, 7950 (2007)[CrossRef]
  10. G. Jarosz, R. Signerski, J. Godlewski, Acta Physica Polonica A 87, 855 (1995).
  11. A.K. Ghosh, T. Feng, "Merocyanine organic solar cells", J. Appl. Phys. 49, 5982 (1978)[CrossRef]
  12. S.-B. Rim, P. Peumans, "The effects of optical interference on exciton diffusion length measurements using photocurrent spectroscopy", J. Appl. Phys. 103, 124515 (2008)[CrossRef]
  13. T. Osasa, Y. Matsui, T. Matsumura, M. Matsumura, "Determination of photo-active region in organic thin film solar cells with an organic heterojunction", Solar Energy Materials and Solar Cells, 90, 3136 (2006)[CrossRef]
  14. L.A.A. Pettersson, L.S. Roman, O. Ingan?s, "Modeling photocurrent action spectra of photovoltaic devices based on organic thin films", J. Appl. Phys. 86, 487 (1999)[CrossRef]
  15. T. Stubinger, W. Brutting, "Exciton diffusion and optical interference in organic donor–acceptor photovoltaic cells", J. Appl. Phys. 90, 3632 (2001)[CrossRef]
  16. Ch. Breyer, M. Vogel, M. Mohr, B. Johnev, K. Fostiropoulos, "Influence of exciton distribution on external quantum efficiency in bilayer organic solar cells", Phys. Stat. Sol. (B) 243, 3176 (2006)[CrossRef]
  17. L.-G. Yang, H.Z. Chen, M. Wang, "Optimal film thickness for exciton diffusion length measurement by photocurrent response in organic heterostructures", Thin Solid Films 516, 7701 (2008)[CrossRef]
  18. Y. Terao, H. Sasabe, C. Adachi, "Correlation of hole mobility, exciton diffusion length, and solar cell characteristics in phthalocyanine/fullerene organic solar cells", Appl. Phys. Lett. 90, 103515 (2007)[CrossRef]
  19. R. Signerski, G. Jarosz, "Effect of buffer layers on performance of organic photovoltaic devices based on copper phthalocyanine-perylene dye heterojunction", Opto-Electronics Review 19, 468 (2011)[CrossRef]
  20. N. Minami, M. Asai, "Photocurrent Spectra of Phthalocyanine Films in Relation to Excited State Properties", Jap. J. Appl. Phys. 26, 1754 (1987)[CrossRef]
  21. L.M. Blinov, S.P. Palto, A.A. Vdalyev, Mol. Mat. 1, 65 (1992).
  22. M. Knupfer, T. Schwieger, H. Peisert, J. Fink, "Mixing of Frenkel and charge transfer excitons in quasi-one-dimensional copper phthalocyanine molecular crystals", Phys. Rev. B 69, 165210 (2004)[CrossRef]
  23. M. Wojdyła, B. Derkowska, W. Bała, A. Bratkowski, A. Korcala, Optical Materials 28, 1000 (2006).
  24. S.-B. Rim, R.F. Fink, J.C. Schoneboom, P. Erk, P. Peumans, "Effect of molecular packing on the exciton diffusion length in organic solar cells", Appl. Phys. Lett. 91, 173504 (2007)[CrossRef]

Downloads

Published

2011-09-29

How to Cite

[1]
R. Signerski and G. Jarosz, “Diffusion length of singlet excitons in copper phthalocyanine films”, Photonics Lett. Pol., vol. 3, no. 3, pp. pp. 107–109, Sep. 2011.

Issue

Section

Articles