Time efficient method for defocus error compensation in tomographic phase microscopy

Julianna Kostencka, Tomasz Kozacki, Michał Dudek, Małgorzata Kujawińska


We present a holographic method for defocus error compensation in tomographic phase microscopy, which enables high quality reconstruction in the presence of a meaningful run-out error of the measurement system. The proposed method involves indirect determination of the sample displacement from the in-focus plane. The sought quantity is deduced from the transverse movement of the rotating sample, which can be determined with high precision using correlation-based techniques. The proposed solution features improved accuracy and reduced computation time compared to the conventional autofocusing-based approach. The validity of the concept is experimentally demonstrated by tomographic reconstruction of an optical microtip.

Full Text: PDF

  1. S. Kou, C. Sheppard, "Image formation in holographic tomography", Opt. Lett. 33, 2362 (2008). CrossRef
  2. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (New York, SIAM 2001). CrossRef
  3. T. C. Wedberg, J. J. Stamnes, and W. Singer, "Comparison of the filtered backpropagation and the filtered backprojection algorithms for quantitative tomography", Appl. Opt. 34, 6575 (1995). CrossRef
  4. J. Kostencka and T. Kozacki, "Optical diffraction tomography: accuracy of an off-axis reconstruction", Proc. SPIE 9132, 91320M (2014) CrossRef
  5. A. Kuś et al., "Tomographic phase microscopy of living three-dimensional cell cultures", J. Biomed. Opt. 19, 46009 (2014) CrossRef
  6. J. Kostencka, T. Kozacki, M. Dudek, and M. Kujawińska, "Noise suppressed optical diffraction tomography with autofocus correction", Opt. Express 22, 5731 (2014) CrossRef
  7. W. Górski, "Tomographic imaging of photonic crystal fibers", Opt. Eng. 45, 125002 (2006) CrossRef
  8. F. Charrière et. al., "Cell refractive index tomography by digital holographic microscopy", Opt. Lett. 31, 178 (2006) CrossRef
  9. Y. Jeon and C. K. Hong, "Rotation error correction by numerical focus adjustment in tomographic phase microscopy", Opt. Eng. 48, 105801 (2009) CrossRef
  10. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, "Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging", Appl. Opt. 47, D176 (2008) CrossRef
  11. J. Kostencka, T. Kozacki, and K. Liżewski, "Autofocusing method for tilted image plane detection in digital holographic microscopy", Opt. Commun. 297, 20 (2013) CrossRef
  12. K. Liżewski, S. Tomczewski, T. Kozacki, and J. Kostencka, "High-precision topography measurement through accurate in-focus plane detection with hybrid digital holographic microscope and white light interferometer module", Appl. Optics 53, 2446 (2014) CrossRef
  13. T. Kozacki, M. Józwik, and R. Józwicki, "Determination of optical field generated by a microlens using digital holographic method", Opto-Electron. Rev. 17, 58 (2009) CrossRef
  14. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography", Opt. Lett. 22, 1268 (1997) CrossRef
  15. M. Kujawińska et al., "Interferometric and tomographic investigations of polymer microtips fabricated at the extremity of optical fibers", Proc. SPIE 8494, 849404 (2012) CrossRef
  16. T. Kozacki, K. Falaggis, and M. Kujawińska, "Computation of diffracted fields for the case of high numerical aperture using the angular spectrum method", Appl. Opt. 51, 7080 (2012) CrossRef

Full Text:


We use cookies that are necessary for the website to function and cannot be switched off in our systems. Click here for more information.

Photonics Letters of Poland - A Publication of the Photonics Society of Poland
Published in cooperation with SPIE

ISSN: 2080-2242