All Optical Microwave Frequency Division by 2<sup>n</sup>
DOI:
https://doi.org/10.4302/photon.%20lett.%20pl.v7i3.597Abstract
This paper presents the concept and analysis of an all optical divide-by-2n microwave frequency divider. It uses a Mach-Zehnder light intensity modulator with 100% modulation IM index which is utilized to generate a subharmonic optical sideband. This optical sideband when mixed with the optical carrier in a photodiode produces a difference frequency signal which is a sub-harmonic (divided-by-2) of the primary modulation frequency. This all optical circuit is simple, novel and low noise in character.Full Text: PDF
References
- A.E. Kelly, R.J. Manning, A.J. Poustie, K.J. Blow, "All-optical clock division at 10 and 20 GHz in a semiconductor optical amplifier based nonlinear loop mirror", Electron. Lett. 34, 1337 (1998). CrossRef
- H.J. Lee, H.G. Kim, "Polarization-independent all-optical clock division using a semiconductor optical amplifier/grating filter switch", IEEE Photon. Technol. Lett. 11(4), 469 (1999). CrossRef
- R.J. Manning, I.D. Phillips, A.D. Ellis, A.E. Kelly, A.J. Poustie, K.J. Blow, "All-optical clock division at 40 GHz using semiconductor optical amplifier based nonlinear interferometer", Electron. Lett. 35, 827 (1999). CrossRef
- H. Yokoyama, Y. Hashimoto, H. Kurita, I. Ogura, "Two-stage all-optical subharmonic clock recovery using modelocked semiconductor lasers", Electron. Lett. 36, 1577 (2000). CrossRef
- T. Chattopadhyay, P. Bhattacharyya, S. Das, Proc. of 5th International Conference on Computers and Devices for Communication (CODEC-2012), Kolkata, India (2012).
- P. Bhattacharyya, "All-optical microwave frequency division and multiplication by synchronized semiconductor lasers", Opt. Comm. 319, 188 (2014). CrossRef
- W.D. Cornish, "Microwave frequency dividers: devices and applications", IEEE Proc. Communications, Radar and Signal Processing 129, 208 (1982). CrossRef
- S-C. Chan, J-M. Liu, "Microwave Frequency Division and Multiplication Using an Optically Injected Semiconductor Laser", IEEE J. Quantum Electron., 41, 1142 (2005). CrossRef
- K.K. Chow, C. Shu, Y.M. Yaug, H.F. Liu, "Optical control of period doubling in a gain-switched Fabry-Perot laser diode and its application in all-optical clock division", Proc. IEEE Optoelectronics 150, 239 (2003). CrossRef
- M. Bhattacharya, A.K. Saw, T. Chattopadhyay, "Millimeter-wave generation through phase-locking of two modulation sidebands of a pair of laser diodes", IEEE Photon. Tech. Lett. 16(2), 596 (2004). CrossRef
- M. Bhattacharya, B. Sarkar, T. Chattopadhyay, "Optical generation of millimeter and submillimeter-waves through optical side-band injection locking of semiconductor lasers", IEEE Photon. Tech. Lett. 14, 1611 (2002). CrossRef
- T.B. Simpson, J.M. Liu, A. Gavrielides, "Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers", IEEE Photon. Tech. Lett. 7(7), 709 (1995). CrossRef
- L. Chrostowski, X. Zhao, C.J. Chang-Hasnain, "Microwave performance of optically injection-locked VCSELs", IEEE Trans. Microw. Theory and Tech. 54, 2 (2006). CrossRef
- M.C. Cheng, Y.C. Chi, C.T. Tsai, G.R. Lin, "Suppressing the relaxation oscillation noise of injection-locked WRC-FPLD for directly modulated OFDM transmission", Opt. Expr. 22(13), 15724 (2014) CrossRef
- X. Jin, B.Y. Tarng, S.L. Chuang, Proc. ISDRS, Collage Park, MD, USA (2007).
- T. Chattopadhyay, P. Bhattacharyya, "A scheme for low noise optical pulse generation", J. Opt., 42 (2), 148 (2013). CrossRef
- M. Bhattacharyya, T. Chattopadhyay, "An optical limiter-discriminator using synchronized laser diodes", J. Opt. A: Pure and Appl. Opt. 1, 626 (1999) CrossRef
Downloads
Additional Files
Published
2015-09-30
How to Cite
[1]
T. Chattopadhyay, P. Bhattacharyya, and C. Ghosh, “All Optical Microwave Frequency Division by 2<sup>n</sup>”;, Photonics Lett. Pol., vol. 7, no. 3, pp. pp. 87–89, Sep. 2015.
Issue
Section
Articles